Меню

Как крутится солнце. Период нутации земной оси

Дизайн

Solar Dynamics Observatory, главная космическая солнечная лаборатория NASA, вот уж три года не отводит свой пристальный глаз от солнца. Не выходя из дома, в пасмурный день или даже ночью, мы можем узнать, что происходило на Солнце последние три года.

Первое, что бросается в глаза, когда смотришь на эти наблюдения - это солнечное вращение.

Уже давно из наблюдений солнечных пятен, известно, что поверхность Солнца вращается не как твердое тело, а дифференциально. То есть экватор вращается быстрее чем полюса.

Точки близ солнечного экватора, например солнечные пятна, вращается с периодом 25 дней, в то время как области у полюсов, например приполярные корональные дыры, вращаются с периодом 36 дней. Причина такого вращения - сохранение углового момента.

Когда солнце только только начало сжиматься, т.е. аккрецировать, из большого газового облака под действивем силы гравитации, оно подобно вращающемуся фигуристу, который прижав руки, начинает вращаться быстрее, сохранило свою способность вращаться. Если бы Солнце было твердым, то оно бы вращалось как твердое тело с одной угловой скоростью, но так как Солнце - это звезда, состоящая из плазмы, то разные ее участки вращаются по-разному, т.е. дифференциально.

А что происходит с этим вращением внутри Солнца? Вращается ли Солнце там с одной скоростью или нет?

Дело в том, мы не можем просто так взять и заглянуть внутрь Солнца. Весь видимый солнечный свет приходит к нам с поверхности Солнца, фотосферы. Фотосфера поглощает все фотоны, идущие из нижележащей конвективной зоны. Единственная возможность узнать, что происходит внутри солнца, так это наблюдая солнечные нейтрино. Но, увы, нейтрино не взаимодействуют с веществом, поэтому о движении внутри солнца они нам ничего рассказать не могут.

Структура солнца. Все излучение приходит с фотосферы. Внутрь конвективной зоны и зону лучистого переноса мы заглянуть не можем.

Несмотря на это ограничение, солнечные физики придумали другой способ получения информации о конвективной зоне с помощью звуковых волн. Этот метод сейчас выделился в отдельный раздел солнечной физики, гелиосейсмологию.

Принцип гелиосейсмологии тот же что и в обычной земной сейсмологии.
Если наблюдать за поверхностью солнца в течение длительного времени, то оказывается, что солнечная фотосфера, подобно гигантскому колоколу, колеблется на миллионах различных частот. Т.е. Солнце поет не фальцетом, а с миллионами обертонов. Частоты этих колебаний говорят о структуре и движении вещества, через которые эти колебания проходят. Например, если эти колебания проходят через движущуюся плазму, то частота колебаний смещается из-за эффекта Допплера .

Из гелиосейсмологии выяснилось, что солнце вращается дифференциально не только на поверхности, но и внутри, в конвективной зоне. Еще глубже, в зоне лучистого переноса (см. Первую и вторую картинки), оно вращается твердотельно, т.е. с одной скоростью.

Карта вращения под поверхностью солнца - являются одним из самых больших последних достижений солнечной физики. Горизонтальная ось соответствует экватору, а вертикальная - вертикальной оси вращения солнца. В красных участках солнце вращается c периодом вращение в 25.2 дней, а в синих - с периодом 34 дня.

Узкий участок, обозначенный пунктиром, где дифференциальное вращение сменяется твердотельным называется тахоклиной. Находится она на между конфективной зоной и зоной лучистого переноса.

Несмотря на то, что тахоклина простирается всего на несколько процентов от радиуса солнца, она играет большую роль в жизни Солнца. Именно здесь появляются солнечные пятна, которые со временем в ходе сложного процесса всплывают на поверхность солнца.

Если вы зайдете на сайт solarmonitor.org , который показывает как выглядит солнце на различных длинах волн прямо сегодня, то вы заметите, что солнечные пятна вращаются вместе со всем Солнцем слева направо. Некоторые пятна живут по несколько недель, в то время, как другие по несколько солнечных циклов. Так как солнечные вспышки, оказывающие влияние на наши самолеты, спутники и линии электропередач, обычно случаются в солнечных пятнах и их интенсивность пропорциональна размеру, точнее магнитному потоку пятна, военные организации отслеживают движение крупных солнечных пятен по поверхности солнца.

Вращается ли Солнце вокруг своей оси?

Земля совершает один оборот вокруг своей оси за неполных 24 часа. За время одного оборота проходят день и ночь. А как бы мог установить длительность одного оборота нашей планеты вокруг своей оси наблюдатель на Луне? Он посчитал бы, например, сколько раз за неделю мимо его взора пройдет Америка. Мы можем поступить точно так же, если хотим определить время вращения Солнца вокруг своей оси. Для этого мы должны определить время обращения большого долгоживущего солнечного пятна. Если каждый день наблюдать группу пятен, то можно заметить, что она движется с востока на запад. Значит, Солнце вращается в эту сторону вокруг своей оси. Кроме того, во вращении Солнца есть одна особенность. На экваторе оборот Солнца завершается быстрее, чем на высоких широтах. Это происходит потому, что Солнце - газовый шар. Земля, например, не может так вращаться: ее твердое тело на всех широтах вращается с одинаковой угловой скоростью.

На экваторе Солнце совершает один оборот за 25 земных суток, на 30-м градусе северной или южной широты - уже за 26,5 суток, на широте 40 градусов - более чем за 27 суток, а в полярных областях один оборот Солнца вокруг своей оси продолжается 30 суток. Если бы Земля вращалась, как Солнце, то в Индонезии сутки длились бы 22 часа, в Берлине - 23, а в Гренландии - 24 часа.

Солнце поворачивается вокруг своей оси за время, примерно равное месяцу. Скорости его оборота на разных широтах отличаются. Такое явление называют дифференциальным движением. С Земли движение Солнца кажется немного замедленным, так как за месяц наша планета проходит часть пути по своей орбите и Солнце должно еще немного повернуться, чтобы «догнать» ее.

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью - примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с - едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь - огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя - все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца - около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было - примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения - около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними - больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение - это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики - около 2,728 K, и ниже в другой половине - около 2,722 K.


Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден - эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас - спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика - лишь часть этого процесса.

Луна вращается вокруг Земли. Земля вращается вокруг Солнца. Закономерный вопрос: а Солнце тоже вокруг чего-нибудь вращается?

Ответ на этот вопрос астрономы получили только в 20 веке, и ответ этот - ДА.

Наше Солнце входит в состав огромной звездной системы, которая называется Галактикой (еще ее называют Млечный Путь). Наша Галактика имеет форму диска, похожего на две сложенные краями тарелки. В центре его находится округлое ядро Галактики.


Наша Галактика - вид сбоку

Если посмотреть на нашу Галактику сверху, то она выглядит, как спираль, в которой звездное вещество сосредоточено, в основном, в ее ветвях, называемых галактическими рукавами. Рукава находятся в плоскости диска Галактики.



Наша Галактика - вид сверху

Наша Галактика содержит более 100 миллиардов звезд. Диаметр диска Галактики - около 30 тысяч парсек (100 000 световых лет) , а толщина - около 1000 световых лет.

Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики, подобно тому, как планеты в Солнечной системе обращаются вокруг Солнца. Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса (находящегося в созвездии Волосы Вероники). Скорость вращения диска не одинакова на различных расстояниях от центра: она убывает по мере удаления от него.

Чем ближе к центру Галактики - тем выше плотность звезд. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной.

Однако Солнце находится очень далеко от центра Галактики, можно сказать - на ее окраине, на расстоянии около 26 тыс. световых лет (8,5 тысяч парсек), вблизи плоскости галактики. Оно расположено в рукаве Ориона, соединенном с двумя более крупными рукавами - внутренним рукавом Стрельца и внешним Рукавом Персея.

Солнце движется со скоростью около 220-250 километров в секунду вокруг центра Галактики и делает полный оборот вокруг ее центра, по разным оценкам, за 220-250 миллионов лет. За время своего существования Период обращения Солнца вместе с окрестными звездами около центра нашей звездной системы называют галактическим годом. Но нужно понимать, что общего периода для Галактики нет, так как она вращается не как твердое тело. Солнце за время своего существования облетело Галактику примерно 30 раз.

Обращение Солнца вокруг центра Галактики носит колебательный характер: каждые 33 миллиона лет оно пересекает галактический экватор, затем поднимается над его плоскостью на высоту в 230 световых лет и снова опускается вниз, к экватору.

Интересно, что Солнце делает полный оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава. В результате Солнце не пересекает области активного звездообразования, в которых часто вспыхивают сверхновые - источники губительного для жизни излучения. То есть оно находится в секторе Галактики, максимально благоприятном для зарождения и поддержания жизни.

Кстати...

Наиболее пытливые почемучки, наверно, не остановятся и на этом и спросят: "А наша Галактика тоже вращается вокруг какого-нибудь центра?"

И снова ответ - да.

Млечный Путь входит в группу галактик, связанных между собой гравитационными силами, которую называют Местной группой. Кроме Млечного пути, в нее входят галактика Андромеды и галактика Треугольника, а также около 50 более мелких галактик. Поперечник Местной группы - 1 миллион парсек (мегапарсек), или 3 млн. световых лет.

Местная группа галактик, в свою очередь, является частью еще более крупного скопления - Местного сверхскопления Девы. Его размер - 200 миллионов световых лет, а его центр находится на расстоянии 50 млн. световых лет от нас. Сверхскопление вращается вокруг оси, перпендикулярной его диску, и напоминает в этом смысле обычную галактику. Скорость движения Местной группы вокруг центра сверхгалактики - около 400 километров в секунду.

В конце 20 века астрономы выяснили, что Местное сверхскопление несется со скоростью 500-700 километров в секунду в сторону огромнейшего скопления галактик, обладающего мощной гравитационной силой (силой притяжения), который назвали Великим Аттрактором (англ. Great Attractor, от "attract" - "привлекать, притягивать, пленять"). Он находится на расстоянии примерно 65 миллионов парсек или 250 млн. световых лет, в созвездии Наугольника.



Иерархия движений, в которых принимает участие наша планета:
а) вращение Земли вокруг Солнца;
б) вращение вместе с Солнцем вокруг центра нашей Галактики;
в) движение относительно центра Местной группы галактик вместе со всей Галактикой под действием гравитационного притяжения туманности Андромеды (галактики М31);
г) движение к скоплению галактик в созвездии Девы и движение к Великому Аттрактору.

Местное сверхскопление, в свою очередь, - лишь одно из множества сверхскоплений галактик во Вселенной. Соседнее с нашим сверхскопление находится в созвездии Геркулеса на расстоянии 700 миллионов световых лет, причём на протяжении примерно 300 миллионов световых лет по пути к нему - полная пустота, нет ни галактик, ни звезд. Таким образом, вещество во Вселенной распределено не равномерно и не хаотически, а в виде ячеек, в гранях которых сосредоточено вещество, а внутри ячеек - гигантские абсолютно пустые пространства-"пузыри". Галактики и их скопления расположены в порядке, напоминающем пчелиные соты невообразимых размеров. Чем ближе к стыкам таких ячеек, тем сильнее сконцентрировано вещество. Чем обусловлена такая симметричная, упорядоченная структура? На этот вопрос сегодня нет ответа.

Выше мы говорили, что Солнце вращается вокруг своей оси, но не как твердый шар. Период его обращения различен на разных гелиографических широтах. Кроме того, вращение меняется со временем. Поэтому задача определения вращения Солнца остается всегда, актуальной. Вращение Солнца легче всего определять по времени прохождения различных образований по диску Солнца. Это называется "определение-по трассерам". Поскольку пятна, факелы, флоккулы, волокна располагаются на разных высотах над основанием фотосферы и на разных гелиографических широтах, периоды их обращения отличаются. Самое быстрое вращение на экваторе. При переходе к полюсам скорость вращения уменьшается, период обращения возрастает. С ростом высоты в атмосфере Солнца скорость вращения увеличивается.

Регулярно определяя долготу и широту долгоживущих солнечных пятен, можно определить среднюю скорость их вращения и ее изменение с широтой. При этом надо помнить, что мы наблюдаем Солнце не с неподвижной точки, а с Земли, движущейся вокруг Солнца в ту же сторону, в которую вращается и само Солнце. Поэтому для земного наблюдателя период обращения Солнца (так называемый синодический период) примерно на двое суток больше, чем период вращения Солнца относительно далеких звезд, которые можно считать неподвижными. Последний период называется сидерическим.

Если мы определили, что за сутки долгота пятна изменилась на угол Δλ п, то сюда вошел не только угол поворота Солнца за сутки, Δλ , но и угол, соответствующий смещению Земли на орбите Δλ 3 ,


Так как Земля делает полный оборот в 360° вокруг Солнца за год, т. е. за 365,2422 суток, то


Зная Δλ 3 , можно найти угол поворота Солнца за сутки Δλ по наблюдению изменения λ п за то же время:


Но по измерениям разных пятен, даже если они находятся на одной широте, скорость вращения Солнца получается разной. Дело здесь не только в ошибках измерения координат пятен, о которых мы говорили раньше. На самом деле каждое пятно, вращаясь со всей поверхностью Солнца, перемещается еще и относительно этой поверхности или. как говорят, имеет собственное движение. Скорости собственных движений пятен весьма разнообразны, достигая иногда 1° в сутки. Изучение этих движений представляет большой интерес, так как они тесно связаны с эволюцией активных областей и вспышками.

Таким образом мы пришли к тому, что из измерений координат пятен можно определить две характеристики: скорость вращения Солнца на разных широтах и собственные движения пятен. Решение первой из этих задач требует большого наблюдательного материала. А так как вращение Солнца меняется не только с широтой, но и со временем, я не советую любителям браться за ее решение. Гораздо более интересная и доступная задача - собственные движения пятен.

В этом случае мы можем учесть скорость вращения Солнца на разных широтах по формуле, полученной из длительных наблюдений солнечных пятен.

Эта формула дает изменение долготы пятна, расположенного на широте φ, за сутки только из-за вращения Солнца. Собственные движения пятен сюда не входят.

Задача определения собственных движений сводится к следующему. Для изучаемых пятен несколько раз в день измеряются гелиографические координаты φ п и λ п в моменты Т п (по всемирному времени). Находим для каждого наблюдения ΔТ П =Т П -Т 1 , выраженное в долях суток. Затем из приведенной выше формулы для Δλ и найденных значенийΔТ П находим угол поворота Солнца за время ΔТ П на широте пятна φ п,