Меню

Описание конденсационной установки котлов тгм 84. Влияние паровой нагрузки на тепловые потоки факела в топке котла

Стены

^ ТЕХНИЧЕСКОЕ ЗАДАНИЕ
«Устройство отбора проб уходящих газов котлов НГРЭС»


ОГЛАВЛЕНИЕ:

1 ПРЕДМЕТ 3

^ 2 ОБЩЕЕ ОПИСАНИЕ ОБЪЕКТА 3

3 ОБЪЕМ ПОСТАВКИ \ ВЫПОЛНЕНИЯ РАБОТ \ ОКАЗАНИЯ УСЛУГ 6

4 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 11

5 ИСКЛЮЧЕНИЯ\ ОГРАНИЧЕНИЯ\ ОБЯЗАТЕЛЬСТВА ПО ПРЕДОСТАВЛЕНИЮ РАБОТ\ПОСТАВОК\УСЛУГ 12

6 Испытания, приемка, ввод в эксплуатацию 13

^ 7 СПИСОК ПРИЛОЖЕНИЙ 14

8 ТРЕБОВАНИЯ по ОБЕСПЕЧЕНИЮ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ РАБОТ 14

9 ТРЕБОВАНИЯ ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ ПОДРЯДНЫМИ ОРГАНИЗАЦИЯМИ 17

^ 10 АЛЬТЕРНАТИВНЫЕ ПРЕДЛОЖЕНИЯ 18

1ПРЕДМЕТ

В соответствии с Экологической программой ОАО «Энел ОГК-5» на 2011-2015 годы филиала «Невинномысская ГРЭС» ОАО «Энел ОГК-5» необходимо следующее:

  1. Определение фактической величины концентрации оксидов азота, оксида углерода, метана при разных нагрузках и разных режимах работы котлов ТГМ-96 (котел № 4) приборным парком исполнителя.

  2. Определение плотности распределения диоксида азота по площади конвективной поверхности в контрольном сечении.
3. Оценка снижения образования оксидов азота за счет применения режимных мероприятий и изменения технико-экономических показателей работы котлов (определения эффективности применения режимных мероприятий) .

4. Разработка предложений по применению малозатратных реконструктивных мероприятий направленных на снижение выбросов оксидов азота .

^

2ОБЩЕЕ ОПИСАНИЕ ОБЪЕКТА


    1. Общие сведения
Невинномысская государственная районная электрическая станция (НГРЭС) проектной мощностью 1340 МВт предназначена для покрытия потребностей в электрической энергии Северного Кавказа и снабжения тепловой энергией предприятий и населения города Невинномысска. В настоящее время установленная мощность Невинномысской ГРЭС составляет 1700,2 МВт.

ГРЭС расположена на северной окраине города Невинномысска и состоит из теплоэлектроцентрали (ТЭЦ), конденсационных энергоблоков открытой компоновки (блочная часть) и парогазовой установки (ПГУ).

Полное наименование объекта: филиал «Невинномысская ГРЭС» открытого акционерного общества «Энел пятая генерирующая компания оптового рынка электроэнергии» в г. Невинномысске Ставропольского края.

Место нахождения и почтовый адрес: Российская Федерация, 357107, город Невинномысск, Ставропольского края, улица Энергетиков, дом 2.


    1. ^ Климатические условия
Климат: умеренно-континентальный

Климатические условия и параметры окружающего воздуха в данной местности соответствуют месторасположению ГРЭС (г. Невинномысск) и характеризуются данными таблицы 2.1.

Таблица 2.1 Климатические данные региона (г. Невинномысск из СНиП 23-01-99)


край, пункт

Температура наружного воздуха, град. С

Температура наружного воздуха, средняя по месяцам, град. С

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

Ставрополь

-3,2

-2,3

1,3

9,3

15,3

19,3

21,9

21,2

16,1

9,6

4,1

-0,5

Меньше 8 ℃

Меньше 10℃

Средне-годовая

Наиболее холодной пятидневки обеспеченностью 0,92

Продолжи-тельность, сут.

Средняя температура, град. С

Продолжи-тельность, сут

Средняя температура, град. С

9,1

-19

168

0,9

187

1,7

Многолетняя средняя температура воздуха наиболее холодного зимнего месяца (январь) составляет минус 4,5°С, самого жаркого (июля) +22,1°С.

Продолжительность периода с устойчивыми морозами около 60 дней,

Скорость ветра, повторяемость которого не превышает 5%, равна - 10-11 м/сек.

Господствующее направление ветра – восточное.

Годовая относительная влажность составляет – 62,5%.


    1. ^ ХАРАКТЕРИСТИКА И КРАТКОЕ ОПИСАНИЕ КОТЕЛЬНОГО АГРЕГАТА ТГМ - 96.
Газомазутный котел типа ТГМ-96 Таганрогского котельного завода однобарабанный, с естественной циркуляцией, паропроизводительностью 480 т/ч со следующими параметрами:

Давление в барабане - 155 ати

Давление за главной паровой задвижкой - 140 ати

Температура перегретого пара - 560С

Температура питательной воды - 230С
^ Основные расчетные данные котла при сжигании газа:
Паропроизводительность т/час 480

Давление перегретого пара кг/см 2 140

Температура перегретого пара С 560

Температура питательной воды С 230

Температура холодного воздуха перед РВВ С 30

Температура горячего воздуха С 265
^ ХАРАКТЕРИСТИКА ТОПКИ

Объем топочной камеры м 3 1644 Теплонапряжение топочного объема ккал/м 3 ч 187,10 3

Часовой расход топлива ВР нм 3 /ч т/ч 37.2.10 3

^ ТЕМПЕРАТУРА ПАРА

За настенным пароперегре вателем С 391 Перед крайними ширмами С 411

После крайних ширм С 434 После средних ширм С 529 После входных пакетов конвективного пароперегревателя С 572

После выходных пакетов конвективного п/п. С 560

^ ТЕМПЕРАТУРА ГАЗОВ

За ширмами С 958

За конвективным п/п С 738 За водяным экономайзером С 314

Уходящих газов С 120
Компановка котла П- образная, с двумя конвективными шахтами.Топочная камера экранирована испарительными трубами и панелями радиационного пароперегревателя.

Потолок топки горизонтального газохода поворотной камеры экранирован панелями потолочного перегревателя. В поворотной камере и переходном газоходе расположен ширмовой перегреватель.

Боковые стены поворотной камеры и скосы конвективных шахт, экранированы панелями настенного водяного экономайзера. В конвективных шахтах расположен конвективный пароперегреватель и водяной экономайзер.

Пакеты конвективного пароперегревателя крепятся на подвесных трубах водяного экономайзера.

Пакеты конвективного водяного экономайзера опираются на балки, охлаждаемые воздухом.

Поступающая в котел вода проходит последовательно подвесные трубы, конденсаторы, настенный водяной экономайзер, конвективный водяной экономайзер и поступает в барабан.

Пар из барабана поступает в 6 панелей настенного радиационного пароперегревателя, из радиационного поступает в потолочный, из потолочного в ширмовый, из ширмового в потолочно-настенный и затем в конвективный пароперегреватель. Регулирование температуры пара осуществляется двумя впрысками собственного” конденсата. Первый впрыск осуществляется на всех котлах перед ширмовым пароперегревателем, второй на К-4,5 и третий на 5А впрыски между входными и выходными пакетами конвективного п/п, второй впрыск на К-5А в рассечку крайних и средних ширм.

Для подогрева воздуха, необходимого для горения топлива, установлены три регенеративных воздухоподогревателя, расположенных с задней стороны котла. Котел оборудован двумя дутьевыми вентиляторами типа ВДН-26. II и двумя дымососами типа ДН26х2А.

Топочная камера котлоагрегата имеет призматическую форму. Размеры топочной камеры в свету:

Ширина - 14860 мм

Глубина - 6080 мм

Объем топочной камеры - 1644 м 3 .

Видимое тепловое напряжение топочного объема при нагрузке 480 т/час: - на газе 187.10 3 ккал/м 3 час;

На мазуте - 190.10 3 ккал/ м 3 час.

Топочная камера полностью экранирована испарительными трубами диам. 60х6 с шагом 64мм и перегревательными трубами. Для понижения чувствительности циркуляции к различным тепловым и гидравлическим перекосам, все испарительные экраны секционированы, причем каждая секция (панель) представляет собой самостоятельный контур циркуляции.

Горелочный аппарат котла.

Наименование величин Един. измер. Г а з Мазут

1. Номинальная производительн. кг/час 9050 8400
2. Скорость воздуха м/сек 46 46
3. Скорость истечения газа м/сек 160 -
4. Сопротивление горелки кг/м 2 150 150

по воздуху.
5. Максимальная производитель- нм 3 /час 11000

ность по газу
6. Максимальная производитель- кг/час - 10000

ность по мазуту.
7. Допустимый предел регулиро- % 100-60% 100-60%

вания нагрузки. от номин. от номин.
8. Давление газа перед горелкой. кг/м 2 3500 -
9. Давление мазута перед горел- кгс/см 2 - 20

кой.
10. Минимальное понижение дав- - - 7

ления мазута при понижен.

нагрузке.

Краткое описание горелки - типа ГМГ.
Горелки состоят из следующих узлов:

а) улитки, предназначенной для равномерного подвода периферийного воздуха к направляющим лопаткам,

б) направляющих лопаток с регистром, установленных на входе в камеру периферийного подвода воздуха. Направляющие лопатки предназначены для турбулизации потока периферийного воздуха и изменения его крутки. Увеличение его крутки путем прикрытия направляющих лопаток увеличивает конусность факела и уменьшает его дальнобойность и наоборот,

в) камеры центрального подвода воздуха, образованной с внутренней стороны поверхностью трубы диам. 219 мм, которая одновременно служит для установки в ней рабочей мазутной форсунки и с наружной стороны поверхностью трубы диам. 478 мм, которая одновременно является внутренней поверхностью камеры на выходе в топку, имеет 12 зафиксированных направляющих лопаток (розетку), которые предназначены для турбулизации потока воздуха, направляемого к центру факела.

г) камеры периферийного подвода воздуха, образованы с внутренней стороны поверхностью трубы диам. 529 мм, которая одновременно является наружной поверхностью камеры центрального подвода газа и с наружной стороны поверхностью трубы диам. 1180мм, которая одновременно является внутренней поверхностью камеры периферийного подвода газа,

д) камеры центрального подвода газа, имеющей со стороны выхода в топку ряд сопел диам. 18 мм (8 шт) и ряд отверстий диам. 17 мм (16 шт). Сопла и отверстия расположены в два ряда по окружности наружной поверхности камеры,

е) камеры периферийного подвода газа, имеющей со стороны выхода в топку два ряда сопел диам. 25 мм в количестве 8 шт и диам. 14 мм в количестве 32 шт. Сопла расположены по окружности внутренней поверхности камеры.

Для возможности регулирования расхода воздуха на горелках установлены:

Общий шибер на подводе воздуха к горелке,

Шибер на периферийном подводе воздуха,

Шибер на центральном подводе воздуха.

Для предотвращения подсоса воздуха в топку установлена заслонка на направляющей трубе мазутной форсунки.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ
ЭНЕРГОСИСТЕМ

ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА
КОТЛА ТГМ-96Б ПРИ СЖИГАНИИ МАЗУТА

Москва 1981

Настоящая Типовая энергетическая характеристика разработана Союзтехэнерго (инж. Г.И. ГУЦАЛО)

Типовая энергетическая характеристика котла ТГМ-96Б составлена на базе тепловых испытаний, проведенных Союзтехэнерго на Рижской ТЭЦ-2 и Средазтехэнерго на ТЭЦ-ГАЗ, и отражает технически достижимую экономичность котла.

Типовая энергетическая характеристика может служить основой для составления нормативных характеристик котлов ТГМ-96Б при сжигании мазута.



Приложение

. КРАТКАЯ ХАРАКТЕРИСТИКА ОБОРУДОВАНИЯ КОТЕЛЬНОЙ УСТАНОВКИ

1.1 . Котел ТГМ-96Б Таганрогского котельного завода - газомазутный с естественной циркуляцией и П-образной компоновкой, предназначен для работы с турбинами T -100/120-130-3 и ПТ-60-130/13. Основные расчетные параметры котла при работе на мазуте приведены в табл. .

По данным ТКЗ, минимально допустимая нагрузка котла по условию циркуляции составляет 40 % номинальной.

1.2 . Топочная камера имеет призматическую форму и в плане представляет собой прямоугольник с размерами 6080×14700 мм. Объем топочной камеры - 1635 м 3 . Тепловое напряжение топочного объема составляет 214 кВт/м 3 , или 184 · 10 3 ккал/(м 3 · ч). В топочной камере размещены испарительные экраны и на фронтовой стене радиационный настенный пароперегреватель (РНП). В верхней части топки в поворотной камере размещен ширмовый пароперегреватель (ШПП). В опускной конвективной шахте расположены последовательно по ходу газов два пакета конвективного пароперегревателя (КПП) и водяной экономайзер (ВЭ).

1.3 . Паровой тракт котла состоит из двух самостоятельных потоков с перебросом пара между сторонами котла. Температура перегретого пара регулируется впрыском собственного конденсата.

1.4 . На фронтовой стене топочной камеры расположены четыре двухпоточные газомазутные горелки ХФ ЦКБ-ВТИ. Горелки установлены в два яруса на отметках -7250 и 11300 мм с углом подъема к горизонту 10°.

Для сжигания мазута предусмотрены паромеханические форсунки «Титан» номинальной производительностью 8,4 т/ч при давлении мазута 3,5 МПа (35 кгс/см 2). Давление пара на продувку и распыл мазута рекомендовано заводом 0,6 МПа (6 кгс/см 2). Расход пара на форсунку составляет 240 кг/ч.

1.5 . Котельная установка укомплектована:

Двумя дутьевыми вентиляторами ВДН-16-П производительностью с запасом 10 % 259 · 10 3 м 3 /ч, давлением с запасом 20 % 39,8 МПа (398,0 кгс/м 2), мощностью 500/250 кВт и частотой вращения 741/594 об/мин каждой машины;

Двумя дымососами ДН-24×2-0,62 ГМ производительностью с запасом 10 % 415 · 10 3 м 3 /ч, давлением с запасом 20 % 21,6 МПа (216,0 кгс/м 2), мощностью 800/400 кВт и частотой вращения 743/595 об/мин каждой машины.

1.6 . Для очистки конвективных поверхностей нагрева от отложений золы проектом предусмотрена дробевая установка, для очистки РВП - водная обмывка и обдувка паром из барабана со снижением давления в дросселирующей установке. Продолжительность обдувки одного РВП 50 мин.

. ТИПОВАЯ ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА КОТЛА ТГМ-96Б

2.1 . Типовая энергетическая характеристика котла ТГМ-96Б ( рис. , , ) составлена на основании результатов тепловых испытаний котлов Рижской ТЭЦ-2 и ТЭЦ ГАЗ в соответствии с инструктивными материалами и методическими указаниями по нормированию технико-экономических показателей котлов. Характеристика отражает среднюю экономичность нового котла, работающего с турбинами T -100/120-130/3 и ПТ-60-130/13 при нижеприведенных условиях, принятых за исходные.

2.1.1 . В топливном балансе электростанций, сжигающих жидкое топливо, большую часть составляет высокосернистый мазут M 100. Поэтому характеристика составлена на мазут M 100 (ГОСТ 10585-75 ) с характеристиками: A P = 0,14 %, W P = 1,5 %, S P = 3,5 %, (9500 ккал/кг). Все необходимые расчеты выполнены на рабочую массу мазута

2.1.2 . Температура мазута перед форсунками принята 120 ° C (t тл = 120 °С) исходя из условий вязкости мазута M 100, равной 2,5° ВУ, согласно § 5.41 ПТЭ.

2.1.3 . Среднегодовая температура холодного воздуха (t x .в. ) на входе в дутьевой вентилятор принята равной 10 ° C , так как в основном котлы ТГМ-96Б находятся в климатических районах (Москва, Рига, Горький, Кишинев) со среднегодовой температурой воздуха, близкой к этой температуре.

2.1.4 . Температура воздуха на входе в воздухоподогреватель (t вп ) принята равной 70 ° C и постоянной при изменении нагрузки котла, согласно § 17.25 ПТЭ.

2.1.5 . Для электростанций с поперечными связями температура питательной воды (t п.в ) перед котлом принята расчетной (230 °С) и постоянной при изменении нагрузки котла.

2.1.6 . Удельный расход тепла нетто на турбоустановку принят 1750 ккал/(кВт. ч), по данным тепловых испытаний.

2.1.7 . Коэффициент теплового потока принят изменяющимся с нагрузкой котла от 98,5 % при номинальной нагрузке до 97,5 % при нагрузке 0,6 D ном .

2.2 . Расчет нормативной характеристики проведен в соответствии с указаниями «Теплового расчета котельных агрегатов (нормативный метод)», (М.: Энергия, 1973).

2.2.1 . Коэффициент полезного действия брутто котла и потери тепла с уходящими газами подсчитаны в соответствии с методикой, изложенной в книге Я.Л. Пеккера «Теплотехнические расчеты по приведенным характеристикам топлива» (М.: Энергия, 1977).

где

здесь

α ух = α " вэ + Δα тр

α ух - коэффициент избытка воздуха в уходящих газах;

Δα тр - присосы в газовый тракт котла;

Т ух - температура уходящих газов за дымососом.

В расчет заложены значения температур уходящих газов, измеренные в опытах тепловых испытаний котла и приведенные к условиям построения нормативной характеристики (входные параметры t x в , t " кф , t п.в ).

2.2.2 . Коэффициент избытка воздуха врежимной точке (за водяным экономайзером) α " вэ принят равным 1,04 на номинальной нагрузке и изменяющимся до 1,1 на 50 %-ной нагрузке по данным тепловых испытаний.

Снижение расчетного (1,13) коэффициента избытка воздуха за водяным экономайзером до принятого в нормативной характеристике (1,04) достигается правильным ведением топочного режима согласно режимной карте котла, соблюдением требований ПТЭ в отношении присосов воздуха в топку и в газовый тракт и подбором комплекта форсунок.

2.2.3 . Присосы воздуха в газовый тракт котла на номинальной нагрузке приняты равными 25 %. С изменением нагрузки присосы воздуха определяются по формуле

2.2.4 . Потери тепла от химической неполноты сгорания топлива (q 3 ) приняты равными нулю, так как во время испытаний котла при избытках воздуха, принятых в Типовой энергетической характеристике, они отсутствовали.

2.2.5 . Потери тепла от механической неполноты сгорания топлива (q 4 ) приняты равными нулю согласно «Положению о согласовании нормативных характеристик оборудования и расчетных удельных расходов топлива» (М.: СЦНТИ ОРГРЭС, 1975).

2.2.6 . Потери тепла в окружающую среду (q 5 ) при испытаниях не определялись. Они рассчитаны в соответствии с «Методикой испытаний котельных установок» (М.: Энергия, 1970) по формуле

2.2.7 . Удельный расход электроэнергии на питательный электронасос ПЭ-580-185-2 рассчитывался с использованием характеристики насоса, принятой из технических условий ТУ-26-06-899-74.

2.2.8 . Удельный расход электроэнергии на тягу и дутье рассчитан по расходам электроэнергии на привод дутьевых вентиляторов и дымососов, измеренным при проведении тепловых испытаний и приведенный к условиям (Δα тр = 25 %), принятым при составлении нормативной характеристики.

Установлено, что при достаточной плотности газового тракта (Δα ≤ 30 %) дымососы обеспечивают номинальную нагрузку котла на низкой частоте вращения, но без какого-либо запаса.

Дутьевые вентиляторы на низкой частоте вращения обеспечивают нормальную работу котла до нагрузок 450 т/ч.

2.2.9 . В суммарную электрическую мощность механизмов котельной установки включены мощности электроприводов: питательного электронасоса, дымососов, вентиляторов, регенеративных воздухоподогревателей (рис. ). Мощность электродвигателя регенеративного воздухоподогревателя принята по паспортным данным. Мощности электродвигателей дымососов, вентиляторов и питательного электронасоса определены во время тепловых испытаний котла.

2.2.10 . Удельный расход тепла на нагрев воздуха в калориферной установке подсчитан с учетом нагрева воздуха в вентиляторах.

2.2.11 . В удельный расход тепла на собственные нужды котельной установки включены потери тепла в калориферах, КПД которых принят 98 %; на паровую обдувку РВП и потери тепла с паровой продувкой котла.

Расход тепла на паровую обдувку РВП рассчитывался по формуле

Q обд = G обд · i обд · τ обд · 10 -3 МВт (Гкал/ч )

где G обд = 75 кг/мин в соответствии с «Нормами расхода пара и конденсата на собственные нужды энергоблоков 300, 200, 150 МВт» (М.: СЦНТИ ОРГРЭС, 1974);

i обд = i нас. пара = 2598 кДж/кг (ккал/кг)

τ обд = 200 мин (4 аппарата с продолжительностью обдувки 50 мин при включении в течение суток).

Расход тепла с продувкой котла подсчитывался по формуле

Q прод = G прод · i к.в · 10 -3 МВт (Гкал/ч )

где G прод = PD ном 10 2 кг/ч

P = 0,5 %

i к.в - энтальпия котловой воды;

2.2.12 . Порядок проведения испытаний и выбор средств измерений, применяемых при испытаниях, определялись «Методикой испытаний котельных установок» (М.: Энергия, 1970).

. ПОПРАВКИ К НОРМАТИВНЫМ ПОКАЗАТЕЛЯМ

3.1 . Для приведения основных нормативных показателей работы котла к измененным условиям его эксплуатации в допустимых пределах отклонения значений параметров даны поправки в виде графиков и цифровых значений. Поправки к q 2 в виде графиков приведены на рис. , . Поправки к температуре уходящих газов приведены на рис. . Кроме перечисленных, приведены поправки на изменение температуры подогрева мазута, подаваемого в котел, и на изменение температуры питательной воды.

3.1.1 . Поправка на изменение температуры мазута, подаваемого в котел, рассчитана по влиянию изменения К Q на q 2 по формуле

Котлоагрегат ТГМ-84 спроектирован по П-образной компоновке и состоит из топочной камеры, являющейся восходящим газоходом, и опускной конвективной шахты, разделенной на 2 газохода. Переходной горизонтальный газоход между топкой и конвективной шахтой практически отсутствуют. В верхней части топки и поворотной камере расположен ширмовый пароперегреватель. В конвективной шахте, разделенной на 2 газохода, размещены последовательно (по ходу газов) горизонтальный пароперегреватель и водяной экономайзер. За водяным экономайзером находится поворотная камера с золоприемными бункерами.

Два включенных параллельно регенеративных воздухоподогревателя установлены позади конвективной шахты.

Топочная камера имеет обычную призматическую форму с размерами между осями труб 6016*14080 мм и разделена двухсветным водяным экраном на две полутопки. Боковые и задняя стены топочной камеры экранированы испарительными трубами с диаметром 60*6 мм (сталь-20) с шагом 64 мм. Боковые экраны в нижней части имеют скаты к середине в нижней части под углом 15 к горизонтали и образуют «холодный» под.

Двухсветный экран состоит так же из труб диаметром 60*6 мм с шагом 64 мм и имеет окна, образованные разводкой труб, для выравнивания давления в полутопках. Экранная система с помощью тяг подвешена к металлоконструкциям потолочного перекрытия и имеет возможность при тепловом расширении свободно опускаться вниз.

Потолок топочной камеры выполнен горизонтальным и экранирован трубами потолочного пароперегревателя.

Топочная камера, оборудованная 18-ю мазутными горелками, которые расположены на фронтовой стене в три яруса. На котле установлен барабан внутренним диаметром 1800 мм. Длина цилиндрической части 16200 мм. В барабане котла организована сепарация промывка пара питательной водой.

Принципиальная схема пароперегревателей

Пароперегреватель котла ТГМ-84 по характеру восприятия тепла радиационно конвективный и состоит из следующих основных 3-х частей: радиационный, ширмовый или полурадиационный и конвективной.

Радиационная часть состоит из настенного и потолочного пароперегревателя.

Полурадиационный пароперегреватель состоит из 60 унифицированных ширм. Конвективный пароперегреватель горизонтального типа состоит из 2-х частей, размещенных в 2-х газоходах опускной шахты над водяным экономайзером.

На фронтовой стене топочной камеры установлен настенный пароперегреватель, выполненный в виде шести транспортабельных блоков из труб диаметром 42*55 (сталь 12*1МФ).

Выходная камера потолочного п/п состоит из 2-х сварных между собой коллекторов, образующих общую камеру, по одной на каждую полутопку. Выходная камера топочного п/п одна и состоит из 6-и сварных между собой коллекторов.

Входная и выходная камеры ширмового пароперегревателя расположены одна над другой и изготовлены из труб диаметром 133*13 мм.

Конвективный пароперегреватель выполнен по Z-образной схеме, т.е. пар заходит со стороны передней стенки. Каждый п/п состоит из 4-х однозаходных змеевиков.

К устройству для регулирования температуры перегрева пара относятся конденсационная установка и впрыскивающие пароохладители. Впрыскивающие пароохладители устанавливаются перед ширмовыми пароперегревателями в рассечке ширм и в рассечке конвективного пароперегревателя. При работе на газе работают все пароохладители, при работе на мазуте - только установленный в рассечке конвективного п/п.

Стальной змеевиковый водяной экономайзер состоит из 2-х частей, размещенных в левом и правых газоходах опускной конвективной шахты.

Каждая часть экономайзера состоит из 4-х пакетов по высоте. В каждом пакете два блока, в каждом блоке 56 или 54 четырехзаходних змеевика из труб диаметром 25*3,5 мм (сталь20). Змеевики расположены параллельно фронту котла в шахматном порядке с шагом 80 мм. Коллекторы экономайзера внесены наружу конвективной шахты.

На котле установлено 2 регенеративных вращающихся воздухоподогревателя РВП-54.

Расшифровка ТГМ – 84 — Таганрогский газо-мазутный котёл 1984 года выпуска.

Котлоагрегат ТГМ-84 спроектирован по П-образной компоновке и состоит из топочной камеры, являющейся восходящим газоходом, и опускной конвективной шахты, разделённой на два газохода.

Переходной горизонтальный газоход между топкой и конвективной шахтой практически отсутствует. В верхней части топки и поворотной камере расположен ширмовый пароперегреватель. В конвективной шахте, разделённой на два газохода, размещены последовательно (по ходу дымовых газов) горизонтальный пароперегреватель и водяной экономайзер. За водяным экономайзером находится поворотная камера с золоприёмными бункерами.

Два включённых параллельно регенеративных воздухоподогревателя установлены позади конвективной шахты.

Топочная камера имеет обычную призматическую форму с размерами между осями труб 6016 14080 мм и разделена двухсветным водяным экраном на две полутопки. Боковые и задняя стены топочной камеры экранированы испарительными трубами с диаметром 60 6 мм (сталь 20) с шагом 64мм. Боковые экраны в нижней части имеют скаты к середине, в нижней части под углом 15 к горизонтали, и образуют «холодный под.

Двухсветный экран состоит также из труб диаметром 60 6 мм с шагом 64мм и имеет окна, образованные разводкой труб, для выравнивания давления в полутопках. Экранная система с помощью тяг подвешена к металлоконструкциям потолочного перекрытия и имеет возможность при тепловом расширении свободно опускаться вниз.

Потолок топочной камеры выполнен горизонтальными и экранированными трубами потолочного пароперегревателя.

Топочная камера оборудована 18-ю мазутными горелками, которые расположены на фронтовой стене в три яруса.

На котле установлен барабан внутренним диаметром 1800мм. Длина цилиндрической части 16200 мм. В барабане котла организована сепарация и промывка пара питательной водой.

Пароперегреватель котла ТГМ-84 по характеру восприятия тепла радиационно-конвективный и состоит из трёх следующих основных частей: радиационной, ширмовой (или полурадиационной) и конвективной.

Радиационная часть состоит из настенного и потолочного пароперегревателя.

Полурадиационный пароперегреватель из 60 унифицированных ширм.

Конвективный пароперегреватель горизонтального типа состоит из двух частей, размещённых в двух газоходах опускной шахты над водяным экономайзером.

На фронтовой стене топочной камеры установлен настенный пароперегреватель, выполненный в виде шести транспортабельных блоков из труб диаметром 42х5,5 мм (ст. 12Х1МФ).

Входная камера потолочного пароперегревателя состоит из двух сварных между собой коллекторов, образующих общую камеру, по одной на каждую полутопку. Выходная камера потолочного пароперегревателя одна и состоит из шести сварных между собой коллекторов.

Входная и выходная камеры ширмового пароперегревателя расположены одна над другой и изготовлены из труб диаметром 133х13 мм.

Конвективный пароперегреватель выполнен по z – образной схеме, т.е. пар заходит со стороны передней стенки. Каждый пакет состоит из 4-х однохаходных змеевиков.

К устройству для регулирования температуры перегрева пара относятся: конденсационная установка и впрыскивающие пароохладители. Впрыскивающие пароохладители устанавливаются перед ширмовыми пароперегревателями в рассечке ширм и в рассечке конвективного пароперегревателя. При работе котла на газе, работают все пароохладители, при работе на мазуте – только установленный в рассечке конвективного пароперегревателя.

Стальной змеевиковый водяной экономайзер состоит из двух частей, размещенных в левом и правом газоходах опускной конвективной шахты.

Каждая часть экономайзера состоит из 4-х пакетов по высоте. В каждом пакете два блока, в каждом блоке 56 или 54 четырёхзаходных змеевика из труб диаметром 25х3,5 мм (сталь20). Змеевики расположены параллельно фронту котла в шахматном порядке с шагом 80мм. Коллекторы экономайзера вынесены наружу конвективной шахты.

На котле установлено два регенеративных вращающихся воздухоподогревателя РВП-54. Воздухоподогреватель вынесен наружу и представляет собой вращающийся ротор, заключённый внутри неподвижного корпуса. Вращение ротора осуществляется электродвигателем с редуктором со скоростью 3 об/мин.. Снижение присосов холодного воздуха в воздухоподогреватель и перетоков воздуха с воздушной стороны в газовую достигается путём установки радиальных и периферийных уплотнений.

Каркас котла состоит из металлических колонн, связанных горизонтальными балками, фермами и раскосами и служит для восприятия нагрузок от веса барабана, поверхностей нагрева, обмуровки, площадок обслуживания, газовоздуховодов и других элементов котла. Каркас изготавливается сварным из профильного проката и листовой стали.

Для очистки поверхностей нагрева конвективного пароперегревателя и водяного экономайзера применяется дробеструйная установка, в которой используется кинетическая энергия свободно падающих дробинок, размером 3-5 мм. Может быть использована также газоимпульсная очистка.

INFLUENCE OF STEAM LOAD OF RADIATION PROPERTIES OF THE TORCH IN THE BOILER FIRE CHAMBER

Mikhail Taimarov

dr. sci. tech., professor of the Kazan state energetic university,

Rais Sungatullin

high teacher of the Kazan state energetic university,

Russia, Republic of Tatarstan, Kazan

АННОТАЦИЯ

В данной работе рассматривается тепловой поток от факела при сжигании природного газа в котле ТГМ-84А (станционный № 4) Нижнекамской ТЭЦ-1 (НкТЭЦ-1) для различных режимных условий с целью определения условий, при которых обмуровка заднего экрана наименее подвержена термическому разрушению.

ABSTRACT

In this operation the heat flux from a torch in case of combustion of natural gas in the boiler TGM-84A (station № 4) of Nizhnekamsk TETc-1 (NkTETs-1) for different regime conditions for the purpose of determination of conditions under which the brickwork envelope of the back screen is least subject to thermal corrupting is considered.

Ключевые слова: паровые котлы, тепловые потоки, параметры крутки воздуха.

Keywords: boilers, heat fluxes, air twisting parameters.

Введение.

Котел ТГМ-84А широко распространенный газомазутный котел имеет сравнительно небольшие габариты. Его топочная камера разделена двухсветным экраном. Нижняя часть каждого бокового экрана перехо­дит в слегка наклонный подовый экран, нижние коллекторы которого прикреплены к коллекторам двухсветного экрана и совместно переме­щаются при тепловых деформациях во время растопок и остановок котла. Наклонные трубы пода защищены от излучения факела слоем огне­упорного кирпича и хромитовой массы. Наличие двухсветного экрана обес­печивает интенсивное охлаждение топочных газов.

В верхней части топки трубы заднего экрана отогнуты внутрь топочной камеры, образуя порог с вылетом 1400 мм. Этим обеспечивается омывание ширм и их защита от прямого излучения факела. Десять труб каждой панели –прямые, выступа в топку не имеют и яв­ляются несущими. Выше порога располагаются ширмы, которые являются частью пароперегревателя и предназначены для охлаждения продуктов сго­рания и перегрева пара. Наличие двухсветного экрана по замыслу конструкторов должно обеспечивать более интенсивное охлаждение топочных газов, чем в близком по производительности газомазутном котле ТГМ-96Б. Однако площадь экранной поверхности нагрева имеет значительный запас, который практически выше необходимого для номинальной работы котла.

Базовая модель ТГМ-84 неоднократно подвергалась реконструкции, в результате чего, как указано выше, появилась модель ТГМ-84А (с 4 горелками), а затем ТГМ-84Б. (6 горелками). Котлы первой модификации ТГМ-84 оборудовались 18-ю газомазутными горелками, размещенными в три ряда на фронтовой стене топочной камеры. В настоящее время устанавливают либо четыре, либо шесть горелок большей производительности.

Топочная камера котла ТГМ-84А оборудована четырьмя газомазутными горелками ХФ-ЦКБ-ВТИ-ТКЗ с единичной мощностью 79 МВт, установленными в два яруса в ряд вершинами на фронтовой стене. Горелки нижнего яруса (2 шт.) установлены на отметке 7200 мм, верхнего яруса (2 шт.) – на отметке 10200 мм. Горелки предназначены для раздельного сжигания газа и мазута. Производительность горелки на газе 5200 нм 3 /час. Растопка котла на паромеханических форсунках. Для регулирования температуры перегретого пара установлены 3 ступени впрыска собственного конденсата.

Горелка ХФ-ЦКБ-ВТИ-ТКЗ вихревая двухпоточная по горячему воздуху и состоит из корпуса, 2-х секций аксиального (центрального) завихрителя и 1-ой секции тангенциального (периферийного) завихрителя воздуха, центральной установочной трубы для мазутной форсунки и запальника, газораздающих труб. Основные расчетные (проектные) технические характеристики горелки ХФ-ЦКБ-ВТИ-ТКЗ приведены в табл. 1.

Таблица 1.

Основные расчетные (проектные) технические характеристики горелки ХФ-ЦКБ-ВТИ-ТКЗ :

Давление газа, кПа

Расход газа на горелку, нм 3 /ч

Тепловая мощность горелки, МВт

Сопротивление газового тракта при номинальной нагрузке, мм вод. ст.

Сопротивление воздушного тракта при номинальной нагрузке, мм вод. ст.

Габаритные размеры, мм

3452х3770х3080

Суммарное выходное сечение канала горячего воздуха, м 2

Суммарное выходное сечение газовых труб, м 2

Характеристика направлений крутки воздуха в горелках ХФ-ЦКБ-ВТИ-ТКЗ приведена на рис. 1. Схема механизма крутки приведена на рис. 2. Схема расположения газовыпускных труб в горелках приведена на рис. 3.

Рисунок 1. Схема нумерации горелок, круток воздуха в горелках и расположения горелок ХФ-ЦКБ-ВТИ-ТКЗ на фронтальной стене топки котлов ТГМ-84А № 4,5 НкТЭЦ-1

Рисунок 2. Схема механизма осуществления крутки воздуха в горелках ХФ-ЦКБ-ВТИ-ТКЗ котлов ТГМ-84А НкТЭЦ-1

Короб горячего воздуха в горелке разделяется на два потока. Во внутреннем канале установлен аксиальный закручивающий аппарат, а в периферийном тангенциальном канале установлен регулируемый тангенциальный завихритель.

Рисунок 3. Схема расположения газовыпускных труб в горелках ХФ-ЦЛБ-ВТИ-ТКЗ котлов ТГМ-84А НкТЭЦ-1

Во время экспериментов сжигался Уренгойский газ с теплотой сгорания 8015 ккал/м 3 . Методика экспериментального исследования базируется на использовании бесконтактного способа измерения падающих тепловых потоков от факела . В экспериментах величина падающего от факела на экраны теплового потока q пад измерялась отградуированным в лабораторных условиях радиометром .

Измерения несветящихся продуктов сгорания в топках котлов проводилось бесконтактным способом при помощи радиационного пирометра типа РАПИР, которые показывали радиационную температуру. Погрешность измерения действительной температуры несветящихся продуктов на выходе их из топки при 1100°С радиационным методом для градуировки РК-15 с материалом линзы из кварца оценивается ± 1,36 % .

В общем виде выражение для локальной величины падающего от факела на экраны теплового потока q пад может быть представлено в виде зависимости от реальной температуры факела Т ф в топочной камере и степени черноты факела α ф, согласно закона Стефана-Больцмана:

q пад = 5,67 ´ 10 -8 α ф Т ф 4 , Вт/м 2 ,

где: Т ф – температура продуктов горения в факеле, К. Яркостная степень черноты факела α λ​ф =0,8 взята согласно рекомендациям .

График зависимости по влиянию паровой нагрузки на радиационные свойства факела приведен на рис. 4. Измерения проведены на отметке высоты 5,5 м через лючки № 1 и № 2 левого бокового экрана. Из графика видно, что с увеличением паровой нагрузки котла наблюдается очень сильный рост значений падающих тепловых потоков от факела в области заднего экрана. При измерениях через лючок расположенный ближе к фронтальной стенке также наблюдается рост значений, падающих от факела на экраны тепловых потоков с увеличением нагрузки. Однако, в сравнении с тепловыми потоками у заднего экрана, по абсолютной величине тепловые потоки в области фронтального экрана для больших нагрузок в среднем ниже в 2 … 2,5 раза.

Рисунок 4. Распределение падающего теплового потока q пад по глубине топки в зависимости от паропроизводительности Д к по измерениям через лючки 1, 2 1-го яруса на отметке 5,5 м по левой стенке топки для котла ТГМ-84А № 4 НкТЭЦ-1 при максимальной крутке воздуха в положении лопаток в горелках З (расстояние между лючками 1 и 2 равно 6,0 м при общей глубине топки 7,4 м):

На рис. 5 приведены графики распределения падающего теплового потока q пад по глубине топки в зависимости от паропроизводительности Д к по измерениям через лючки № 6 и № 7 2-го яруса на отметке 9,9 м по левой стенке топки для котла ТГМ-84А № 4 НКТЭЦ при максимальной крутке воздуха в положении лопаток в горелках З в сравнении с результирующими тепловых потоков по измерениям через лючки № 1 и № 2 первого яруса.

Рисунок 5. Распределение падающего теплового потока q пад по глубине топки в зависимости от паропроизводительности Д к по измерениям через лючки № 6 и № 7 2-го яруса на отм. 9,9 м по левой стенке топки для котла ТГМ-84А №4 НКТЭЦ при максимальной крутке воздуха в положении лопаток в горелках З в сравнении с результирующими тепловых потоков по измерениям через лючки № 1 и № 2 первого яруса (расстояние между лючками 6 и 7 равно 5,5 м при общей глубине топки 7,4 м):

Обозначения положения воздухозакручивателей в горелках, принятые в данной работе:

З – максимальная крутка, О – крутка отсутствует, воздух идет без крутки.

Индекс ц – центральная крутка, индекс п – периферийная основная крутка.

Отсутствие индекса означает одинаковое положение лопаток для центральной и периферийной крутки (или обе крутки в положении О или обе крутки в положении З).

Из рис. 5 видно, что наиболее высокие значения тепловых потоков от факела на экранные поверхности нагрева имеют место по измерениям через лючок № 6 второго яруса ближний к задней стенке топки на отметке 9,9 м. На отметке 9,9 м по измерениям через лючок № 6 рост тепловых потоков от факела происходит со скоростью 2 кВт/м 2 на каждые 10 т/час увеличения паровой нагрузки, в то время как для горелки № 1 первого яруса на отметке 5,5 м рост тепловых потоков от факела на задний экран происходит со скоростью 8 кВт/м 2 на каждые 10 т/час увеличения паровой нагрузки.

Рост тепловых потоков, падающих от факела на задний экран по измерениям через лючок № 1 на отметке 5,5 м первого яруса, при увеличении нагрузки котла ТГМ-84А № 4 НКТЭЦ для условий максимальной крутки воздуха в горелках происходит в 4 раза быстрее по сравнению с ростом тепловых потоков около заднего экрана на отметке 9,9 м.

Максимум плотности теплового излучения от факела на задний экран по измерениям через лючок № 6 на отметке 9,9 м даже при максимальной паропроизводительности котла ТГМ-84А №4 НКТЭЦ-1 420 т/час для условий максимальной крутки воздуха в горелках (положение лопаток крутки З) в среднем на 23 % выше по сравнению со значением плотности излучения от факела у заднего экрана на уровне отметки 5,5 м по измерениям через лючок № 1.

Результирующая тепловых потоков, полученная по измерениям на отметке 9,9 м через лючок № 7 второго яруса (ближний к фронтальному экрану), при росте паровой нагрузки котла ТГМ-84А № 4 НКТЭЦ от 230 т/час до 420 т/час для условий максимальной крутки воздуха в горелках (положение лопаток крутки З) на каждые 10 т/час возрастает на 2 кВт/м 2 , т. е. как и в вышеупомянутом случае по измерениям через лючок № 6 ближний к заднему экрану на отметке 9,9 м.

Рост значений падающих тепловых потоков по измерениям через лючок № 7 второго яруса на отметке 9,9 м происходит с увеличением паровой нагрузки котла ТГМ-84А № 4 НКТЭЦ от 230 т/час до 420 т/час на каждые 10 т/час со скоростью 4,7 кВт/м 2 , т. е. в 2,35 раза медленнее в сравнении с ростом падающих от факела тепловых потоков по измерениям через лючок № 2 на отметке 5,5 м.

Измерения падающих от факела тепловых потоков через лючок № 7 на отметке 9,9 м при значениях паровой нагрузки котла 420 т/час практически совпадают со значениями, полученным при измерениях через лючок № 2 на отметке 5,5 м для условий максимальной крутки воздуха в горелках (положение лопаток крутки З) котла ТГМ-84А № 4 НКТЭЦ.

Выводы.

1.Влияние на величину тепловых потоков от факела изменения аксиальной (центральной) крутки воздуха в горелках, по сравнению с изменением тангенциальной крутки воздуха в горелках, невелико и заметнее проявляется на отметке 5,5 м по сечению 2.

2.Наибольшие измеренные потоки имели место при отсутствии тангенциальной (периферийной) крутки воздуха в горелках и составляли 362,7 кВт/м 2 по измерениям через лючок № 6 на отметке 9,9 м при нагрузке 400 т/час. Значения тепловых потоков от факела в диапазоне 360 … 400 кВт/м 2 являются опасными при работе топки с режимом прямого наброса факела на стенку топки с огневой стороны из-за постепенного разрушения внутренней обмуровки.

Список литературы:

  1. Гаррисон Т.Р. Радиационная пирометрия. – М.: Мир, 1964 г., 248 с.
  2. Гордов А.Н. Основы пирометрии – М.: Металлургия, 1964 г. 471 с.
  3. Таймаров М.А. Лабораторный практикум по курсу «Котельные установки и парогенераторы». Учебное пособие Казань, КГЭУ 2002 г., 144 с.
  4. Таймаров М.А. Исследование эффективности объектов энергетического хозяйства. – Казань: Казан. гос. энерг. ун-т, 2011. 110 с.
  5. Таймаров М.А. Практические занятия на ТЭЦ. – Казань: Казан. гос. энерг. ун-т, 2003., 90 с.
  6. Тепловые приемники излучения. Труды 1-ого Всесоюзного симпозиума. Киев, Наукова думка, 1967. 310 с.
  7. Шубин Е.П., Ливин Б.И. Проектирование теплоподготовительных установок ТЭЦ и котельных – М.: Энергия, 1980 г. 494 с.
  8. Trasition Metal Pyrite Dichaicogenides: High-Pressure Synthesis and Correlation of Properties / T.A. Bither, R.I. Bouchard, W.H. Cloud et el. // Inorg. Chem. – 1968. – V. 7. – P. 2208–2220.