Меню

Сущность масс-спектрометрии. Хроматографические методы и их использование в идентификации загрязнителей природных сред

Аксессуары для ванной

Масс-спектрометр
Mass-spectrometer

Масс-спектрометр – прибор для определения масс атомов (молекул) по характеру движения их ионов в электрическом и магнитном полях.
Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Рассмотрим один из наиболее простых вариантов.
Масс-спектрометр состоит из следующих основных частей:
а ) ионного источника, где нейтральные атомы превращаются в ионы (например, под действием нагревания или СВЧ-поля) и ускоряются электрическим полем, б ) области постоянных электрических и магнитных полей, и в ) приёмника ионов, определяющего координаты точек, куда попадают ионы, пересекшие эти поля.
Из ионного источника 1 ускоренные ионы через щель 2 попадают в область 3 постоянного и однородного электрического E и магнитного B 1 полей. Направление электрического поля задаётся положением пластин конденсатора и показано стрелками. Магнитное поле направлено перпендикулярно плоскости рисунка. В области 3 электрическое E и магнитное B 1 поля отклоняют ионы в противоположные стороны и величины напряжённости электрического поля Е и индукции магнитного поля B 1 подобраны так, чтобы силы их действия на ионы (соответственно qЕ и qvB 1 , где q – заряд, а v – скорость иона) компенсировали друг друга, т.е. было qЕ = qvB 1 . При скорости иона v = Е/B 1 он движется не отклоняясь в области 3 и проходит через вторую щель 4, попадая в область 5 однородного и постоянного магнитного поля c индукцией B 2 . В этом поле ион движется по окружности 6, радиус R которой определяется из соотношения
Мv 2 /R = qvB 2 , где М – масса иона. Так как v = Е/B 1 , масса иона определяется из соотношения

M = qB 2 R/v = qB 1 B 2 R/E.

Таким образом, при известном заряде иона q его масса M определяется радиусом R круговой орбиты в области 5. Для расчётов удобно использовать соотношение в системе единиц, приведённой в квадратных скобках:

M[Тл] = 10 6 ZB 1 [Тл]B 2 [Тл]R[м]/E[В/м].

Если в качестве детектора ионов 7 использовать фотопластинку, то этот радиус с высокой точностью покажет чёрная точка в том месте проявленной фотопластинки, куда попадал пучок ионов. В современных масс-спектрометрах в качестве детекторов обычно используют электронные умножители или микроканальные пластинки. Масс-спектрометр позволяет определять массы с очень высокой относительной точностью ΔМ/М = 10 -8 - 10 -7 .
Анализ масс-спектрометром смеси атомов различной массы позволяет также определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Что происходит с образцами крови, которую вы сдаете на клинический анализ? Сколько весит ваш гемоглобин? Каким образом ученые вообще взвешивают молекулы - мельчайшие частицы вещества, которые невозможно увидеть или потрогать? Обо всем этом в рамках рубрики «Просто о сложном» T&P рассказала студентка 5-го курса кафедры химической физики ФМХФ, сотрудница лаборатории ионной и молекулярной физики МФТИ Екатерина Жданова.

Очень часто методы исследований интересуют лишь специалистов в конкретных областях и остаются в тени более фундаментальных проблем, например происхождения жизни или принципов работы человеческого сознания. Тем не менее для поиска ответа на «главный вопрос жизни, Вселенной и всего остального» сначала необходимо научиться отвечать на вопросы более простые. Например, как взвесить молекулу? 

Обычные весы тут вряд ли помогут: масса молекулы метана - около 10^(-23) грамм. Молекула гемоглобина, крупного и сложного белка, весит в несколько раз больше - 10^(-20) грамм. Ясно, что необходим какой-то иной подход к проблеме, ведь привычные нам измерительные приборы к ней не применимы. Надо также понимать, что, взвешивая в магазине яблоки или становясь на весы после тренировок, мы на самом деле измеряем силу, действующую на прибор - весы. Затем уже происходит пересчет в привычные нам единицы - граммы и килограммы.


Но как же взвесить молекулу? Здесь природа оставила нам лазейку. Оказывается, заряженные частицы «чувствуют» присутствие электрического и магнитного поля и изменяют траекторию и характер своего движения. На заряженные частицы также действуют силы, величину которых можно пересчитать в отношении массы к заряду.
Этот метод сегодня довольно популярен и называется масс-спектрометрия. Первооткрывателем масс-спектрометрии считается сэр Дж. Дж. Томсон, нобелевский лауреат по физике. Он обратил внимание на то, что заряженные частицы движутся в магнитном поле по параболическим траекториям, пропорциональным отношению их массы к заряду.

Схема работы масс-спектрометра состоит из нескольких этапов. Прежде всего анализируемое вещество должно пройти ионизацию. Затем оно попадает в систему ионного транспорта, которая должна доставить заряженные частицы в масс-анализатор. В масс-анализаторе как раз происходит разделение ионов в зависимости от отношения массы к заряду. В завершение ионы попадают на детектор, данные с которого анализируются с помощью специального программного обеспечения. Полученная таким образом картинка представляет собой спектр, то есть распределение частиц. Одна из осей этого графика - отношения массы к заряду, вторая - интенсивность. Каждый из пиков на таком графике будет характерным для ионов конкретного вещества, поэтому попадание в прибор посторонних веществ, например воздуха, может привести к искажениям результатов. Чтобы избежать этого, применяется вакуумная система.

Сравнительно простая физическая концепция данного метода требует ряда нетривиальных инженерных решений. Как ионизировать молекулы? Каким способом создавать электромагнитное поле? 
Атомы и молекулы электрически нейтральны, поэтому для проведения масс-спектрометрических измерений необходимо их ионизировать, то есть оторвать электроны с внешних атомных орбиталей или добавить протон. Важную роль играет тип образца, с которым предстоит работать. Для исследования неорганических веществ - металлов, сплавов, горных пород - необходимо использовать одни методы, для органических веществ подходят другие. Очень многие органические вещества (такие как ДНК или полимеры) сложно испарить, то есть перевести в газ, без разложения, а это значит, что исследования живой ткани или биологических образцов требуют применения специальных методов. Кроме того, при ионизации молекулы могут распадаться на отдельные фрагменты. Так мы снова встаем перед вопросом: что именно мы собираемся измерить? Массу всей молекулы или массу фрагментов? И то и другое важно. Более того, измерив массу целой молекулы, исследователи часто специально дробят ее на куски. Так, определив массу структурных элементов белка, мы вместе с тем определяем и их количество, что позволяет нам делать выводы о его химическом составе и структуре.

Все это говорит о разнообразии существующих масс-спектрометров, каждый из которых применяется для решения задач в конкретной области. Этот метод практически незаменим в тех случаях, когда ученым необходимо определить химический состав вещества. Фармацевты применяют масс-спектрометрические эксперименты при разработке лекарств, исследованиях фармакокинетики (то есть биохимических процессов, происходящих в организме при принятии лекарства) и метаболизма. Ученые-биологи используют масс-спектрометрию для анализа белков, пептидов и нуклеиновых кислот. Кроме того, если мы хотим проверить качество воды или продуктов питания, то нам снова не обойтись без этого метода.

Отдельная инновационная область применения масс-спектрометрии - медицинская диагностика. К развитию множества заболеваний приводят структурные изменения белков нашего организма: обычно они классифицируются по образованию характерного кусочка, пептида-маркера. Если вовремя определить такую мутацию, то появляется возможность лечить болезнь на ранней стадии. Кроме того, благодаря современным масс-спектрометрам становится возможным проводить исследования такого рода в режиме реального времени - например, в ходе нейрохирургической операции. Это позволяет точно определять границы между здоровой тканью и опухолью, что критически важно для хирургов.

Кажущаяся на первый взгляд сухой и узкопрофильной, масс-спектрометрия при внимательном ознакомлении оказывается удивительно богатой областью, объединяющей широкий класс приложений с необычными инженерными решениями. Наука показывает, что ответы на менее фундаментальные вопросы порой не менее интересны.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см.: ионизация). История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле - это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров.

Масс-спектрометр - это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле - это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле - это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.

Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.

Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см.: изотопный анализ).

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

1)непрерывные масс-анализаторы

2)импульсные масс-анализаторы

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Масс-спектрометр

Масс-спектрометр - прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Масс-спектрометры

приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В М.-с. регистрация ионов осуществляется электрическими методами, в масс-спектрографах - по потемнению чувствительного слоя фотопластинки, помещаемой в прибор.

М.-с. (рис. 1 ) обычно содержит устройство для подготовки исследуемого вещества 1; ионный источник 2, где это вещество частично ионизуется и происходит формирование ионного пучка; масс-анализатор 3, в котором происходит разделение ионов по массам, точнее, обычно по величине отношения массы m иона к его заряду e ; приёмник ионов 4, где ионный ток преобразуется в электрический сигнал, который затем усиливается и регистрируется. В регистрирующее устройство 6, помимо информации о количестве ионов (ионный ток), из анализатора поступает также информация о массе ионов. М.-с. содержит также системы электрического питания и устройства, создающие и поддерживающие высокий Вакуум в ионном источнике и анализаторе. Иногда М.-с. соединяют с ЭВМ.

При любом способе регистрации ионов масс-спектр в конечном счёте представляет собой зависимость величины ионного тока I от m . Например, в масс-спектре свинца (рис. 2 ) каждый из пиков ионного тока соответствует однозарядным ионам изотопов свинца. Высота каждого пика пропорциональна содержанию данного изотопа в свинце. Отношение массы иона к ширине δ m пика (в единицах массы) R на разных уровнях также различна. Так, например, в спектре рис. 2 в области пика изотопа 208 Pb на уровне 10 % относительно вершины пика R = 250, а на уровне 50 % (полувысота) R = 380. Для полной характеристики разрешающей способности прибора необходимо знать форму ионного пика, которая зависит от мн. факторов. Иногда разрешающей способностью наз. значение той наибольшей массы, при которой два пика, отличающиеся по массе на 1, разрешаются до заданного уровня. Т. к. для мн. типов М.-с. R не зависит от отношения м/е, то оба приведённых определения R совпадают. Принято говорить, что М.-с. с R до 10 2 имеет низкую разрешающую силу, с R Масс-спектрометры 10 2 - 10 3 - среднюю, с R Масс-спектрометры 10 3 - 10 4 - высокую, с R > 10 4 - 10 5 - очень высокую.

Общепринятого определения чувствительности М.-с. не существует. Если исследуемое вещество вводится в ионный источник в виде газа, то чувствительностью М.-с. часто называют отношение тока, создаваемого ионами данной массы заданного вещества, к парциальному давлению этого вещества в ионном источнике. Эта величина в приборах разных типов и с разными разрешающими способностями лежит в диапазоне от 10 -6 до 10 -3 а/мм рт. ст. Относительной чувствительностью называется минимальное содержание вещества, которое ещё может быть обнаружено с помощью М.-с. в смеси веществ. Для разных приборов, смесей и веществ она лежит в диапазоне от 10 -3 до 10 -7 %. За абсолютную чувствительность иногда принимают минимальное количество вещества в r, которое необходимо ввести в М.-с. для обнаружения этого вещества.

Масс-анализаторы. В основе классификации М.-с. лежит принцип устройства масс-анализатора. Различают статические и динамические М.-с. В статических масс-анализаторах для разделения ионов используются электрические и магнитные поля, постоянные или практически не изменяющиеся за время пролёта иона через прибор. Разделение ионов является в этом случае пространственным: ионы с разными значениями m/е движутся в анализаторе по разным траекториям. В масс-спектрографах пучки ионов с разными величинами m/е фокусируются в разных местах фотопластинки, образуя после проявления следы в виде полосок (выходное отверстие ионного источника обычно делается в форме прямоугольной щели). В статических М.-с. пучок ионов с заданным m/е фокусируется на щель приёмника ионов. Масс-спектр образуется (развёртывается) при изменении магнитного или электрического поля, в результате чего в приёмную щель последовательно попадают пучки ионов с разными величинами m/е . При непрерывной записи ионного тока получается график с ионными пиками (рис. 2 ). Для получения в такой форме масс-спектра, зарегистрированного масс-спектрографом на фотопластинке, используются Микрофотометр ы.

На рис. 3 приведена схема распространённого статического масс-анализатора с однородным магнитным полем. Ионы, образованные в ионном источнике, выходят из щели шириной S 1 в виде расходящегося пучка, который в магнитном поле разделяется на пучки ионов с разными

причём пучок ионов с массой m b фокусируется на щель S 1 приёмника ионов. Величина m b /e определяется выражением:

где m b - масса иона (в атомных единицах массы (См. Атомные единицы массы)), е - заряд иона (в ед. элементарного электрического заряда (См. Элементарный электрический заряд)), r - радиус центральной траектории ионов (в см ), Н - напряжённость магнитного поля (в э), V - приложенная разность потенциалов (в в ), с помощью которой ускорены ионы в ионном источнике (ускоряющий потенциал).

Развёртка масс-спектра производится изменением Н или V . Первое предпочтительнее, т. к. в этом случае по ходу развёртки не изменяются условия «вытягивания» ионов из ионного источника. Разрешающая способность такого М.-с.:

где σ 1 - ширина пучка в месте, где он попадает в щель приёмника S 2 .

Если бы фокусировка ионов была идеальной, то в случае масс-анализатора, у которого X 1 = X 2 (рис. 3 ), σ 1 было бы в точности равно ширине щели источника S 1 . В действительности σ 1 >S 1 , что уменьшает разрешающую способность М.-с. Одной из причин уширения пучка является разброс в кинетической энергии у ионов, вылетающих из ионного источника. Это в большей или меньшей степени неизбежно для любого ионного источника (см. ниже). Другими причинами являются: наличие у данного пучка значительной расходимости, рассеяние ионов в анализаторе из-за столкновения с молекулами остаточного газа, «расталкивание» ионов в пучке из-за одноимённости их зарядов. Для ослабления влияния этих факторов применяют «наклонное вхождение» пучка в анализатор и криволинейные границы магнитного поля. В некоторых М.-с. применяют неоднородные магнитные поля, а также т. н. призменную оптику (см. Электронная и ионная оптика). Для уменьшения рассеяния ионов стремятся к созданию в анализаторе высокого вакуума (≤10 -8 мм рт. cm. в приборах со средней и высокой величиной R). Для ослабления влияния разброса по энергиям применяют М.-с. с двойной фокусировкой, которые фокусируют на щель S 2 ионы с одинаковыми m/е , вылетающие не только по разным направлениям, но и с разными энергиями. Для этого ионный пучок пропускают не только через магнитное, но и через отклоняющее электрическое поле специальные формы (рис. 4 ).

Сделать S 1 и S 2 меньше на несколько мкм технически трудно. Кроме того, это привело бы к очень малым ионным токам. Поэтому в приборах для получения высокой и очень высокой разрешающей способности приходится использовать большие величины r и соответственно длинные ионные траектории (до нескольких м ).

В динамических масс-анализаторах для разделения ионов с разными m/е используют, как правило, разные времена пролёта ионами определённого расстояния. Существуют динамические анализаторы, в которых используется сочетание электрического и магнитного полей, и чисто электрические анализаторы. Для динамических масс-анализаторов общим является воздействие на ионные пучки импульсных или радиочастотных электрических полей с периодом, меньшим или равным времени пролёта ионов через анализатор. Предложено более 10 типов динамических масс-анализаторов, в том числе время-пролётный (1), радиочастотный (2), квадрупольный (3), фарвитрон (4), омегатрон (5), магнито-резонансный (6), циклотронно-резонансный (7). Первые четыре анализатора являются чисто электрическими, в последних трёх используется сочетание постоянного магнитного и радиочастотного электрических полей.

Во время-пролётном М.-с. (рис. 5 ) ионы образуются в ионном источнике очень коротким электрическим импульсом и «впрыскиваются» в виде «ионного пакета» через сетку 1 в анализатор 2, представляющий собой эквипотенциальное пространство. «Дрейфуя» вдоль анализатора по направлению к коллектору ионов 3, исходный пакет «расслаивается» на ряд пакетов, каждый из которых состоит из ионов с одинаковыми m/е . Расслоение обусловлено тем, что в исходном пакете энергия всех ионов одинакова, а их скорости и, следовательно, времена пролёта t анализатора обратно пропорциональны

В радиочастотном М.-с. (рис. 6 ) ионы приобретают в ионном источнике одинаковую энергию eV и проходят через систему последовательно расположенных сеточных каскадов. Каждый каскад представляет собой три плоскопараллельные сетки 1, 2, 3, расположенные на равном расстоянии друг от друга. К средней сетке относительно двух крайних приложено высокочастотное электрическое ω поле U вч. При фиксированных частоте этого поля и энергии ионов eV только ионы с определённым m/е имеют такую скорость υ, что, двигаясь между сетками 1 и 2 в полупериоде, когда поле между ними является ускоряющим для ионов, они пересекают сетку 2 в момент смены знака поля и проходят между сетками 2 и 3 также в ускоряющем поле. Т. о., они получают макс. прирост энергии и попадают на коллектор. Ионы других масс, проходя эти каскады, либо тормозятся полем, т. е. теряют энергию, либо получают недостаточный прирост энергии и отбрасываются в конце пути от коллектора высоким тормозящим потенциалом U 3 . В результате на коллектор попадают только ионы с определённым m/е . Масса таких ионов определяется соотношением:

где а - численный коэффициент, S - расстояние между сетками. Перестройка анализатора на регистрацию ионов других масс осуществляется изменением либо начальной энергии ионов, либо частоты высокочастотного поля.

В квадрупольном М.-с. (рис. 7 ) разделение ионов осуществляется в поперечном электрическом поле с гиперболическим распределением потенциала. Поле создаётся квадрупольным конденсатором (квадруполем), состоящим из четырёх стержней круглого или квадратного поперечного сечения, расположенных симметрично относительно центр, оси и параллельно ей. Противолежащие стержни соединены попарно, и между парами приложены постоянная и переменная высокочастотные разности потенциалов. Пучок ионов вводится в анализатор вдоль оси квадруполя через отверстие 1. При фиксированных значениях частоты ω и амплитуды переменного напряжения U 0 только у ионов с определённым значением m/е амплитуда колебаний в направлении, поперечном оси анализатора, не превышает расстояния между стержнями. Такие ионы за счёт начальной скорости проходят через анализатор и, выходя из него через выходное отверстие 2, регистрируются, попадая на коллектор ионов. Сквозь квадруполь проходят ионы, масса которых удовлетворяет условию:

где а - постоянная прибора. Амплитуда колебаний ионов др. масс нарастает по мере их движения в анализаторе так, что эти ионы достигают стержней и нейтрализуются. Перестройка на регистрацию ионов других масс осуществляется изменением амплитуды U o или частоты ω переменной составляющей напряжения.

В фарвитроне (рис. 8 ) ионы образуются непосредственно в самом анализаторе при ионизации молекул электронами, летящими с катода, и совершают колебания вдоль оси прибора между электродами 1 и 2. При совпадении частоты этих колебаний ω с частотой переменного напряжения U вч, подаваемого на сетку, ионы приобретают дополнит. энергию, преодолевают потенциальный барьер и приходят на коллектор. Условие резонанса имеет вид:

где а - постоянная прибора.

В динамических М.-с. с поперечным магнитным полем разделение ионов по массам основано на совпадении циклотронной частоты (См. Циклотронная частота) вращения иона по круговым траекториям в поперечном магнитном поле с частотой переменного напряжения, приложенного к электродам анализатора. Так, в омегатроне (рис. 9 ) под действием приложенных высокочастотного электрического поля Е и постоянного магнитного поля Н ионы движутся по дугам окружности. Ионы, циклотронная частота которых совпадает с частотой ω поля Е , движутся по спирали и достигают коллектора. Масса этих ионов удовлетворяет соотношению:

где а - постоянная прибора.

В магнито-резонансном М.-с. (рис. 10 ) используется постоянство времени пролёта ионами данной массы круговой траектории. Из ионного источника 1 близкие по массе ионы (область траекторий которых I заштрихована), двигаясь в однородном магнитном поле Н , попадают в модулятор 3, где формируется тонкий пакет ионов, которые за счёт полученного в модуляторе ускорения начинают двигаться по орбите II . Дальнейшее разделение по массам осуществляется путём ускорения «резонансных» ионов, циклотронная частота которых кратна частоте поля модулятора. Такие ионы после нескольких оборотов вновь ускоряются модулятором и попадают на коллектор ионов 2.

В циклотронно-резонансном М.-с. (рис. 11 ) происходит резонансное поглощение ионами электромагнитной энергии при совпадении циклотронной частоты ионов с частотой переменного электрического поля в анализаторе; ионы движутся по циклоидам в однородном магнитном поле Н с циклотронной частотой орбитального движения:

(с - скорость света).

Разрешающая способность для каждого типа динамических масс-анализаторов определяется сложной совокупностью факторов, часть из которых, например влияние объёмного заряда и рассеяния ионов в анализаторе, являются общими для всех типов М.-с., как динамических, так и статических. Для приборов (1) важную роль играет отношение времени, за которое ионы пролетают расстояние, равное ширине ионного пакета к общему времени пролёта ионами пространства дрейфа; для приборов (3) - число колебаний ионов в анализаторе и соотношение постоянной и переменной составляющих электрических полей; для приборов (5) - число оборотов, которые совершает ион в анализаторе, прежде чем попадает на коллектор ионов и т. д. Для некоторых типов динамических М.-с. достигнута высокая разрешающая способность: для (1) и (3) R Масс-спектрометры 10 3 , для (6) R Масс-спектрометры 2,5․10 4 , для (7) R Масс-спектрометры 2․10 3 .

Для М.-с. с очень высокой разрешающей способностью, а также для лабораторных приборов широкого назначения, от которых требуются одновременно высокая разрешающая способность, высокая чувствительность, широкий диапазон измеряемых масс и воспроизводимость результатов измерений, наилучшие результаты достигаются с помощью статических М.-с. С другой стороны, в отдельных случаях наиболее удобны динамические М.-с. Например, время-пролётные М. удобны для регистрации процессов длительностью от 10 -2 до 10 -5 сек; радиочастотные М.-с. благодаря малым величинам веса, габаритов и потребляемой мощности перспективны в космических исследованиях; квадрупольные М.-с. благодаря малым размерам анализатора, большому диапазону измеряемых масс и высокой чувствительности применяются при работе с молекулярными пучками (см. Молекулярные и атомные пучки). Магнито-резонансные М.-с. вследствие высоких значений R на низких уровнях интенсивности используются в геохимии изотопов гелия для измерения очень больших изотопных отношений.

Ионные источники. М.-с. классифицируются также по способам ионизации, в качестве которых используются: 1) ионизация электронным ударом; 2) фотоионизация; 3) ионизация в сильном электрическом поле (полевая Ионная эмиссия); 4) ионизация ионным ударом (ионно-ионная эмиссия); 5) Поверхностная ионизация ; электрическая искра в вакууме (вакуумная искра); 6) ионизация под действием лазерного луча (см. Лазерное излучение).

В аналитической масс-спектроскопии (См. Масс-спектроскопия) наиболее часто применяются благодаря относительной технической простоте и достаточно большим создаваемым ионным токам способы: 1 - при анализе испаряемых веществ; 6 - при работе с трудноиспаряемыми веществами и 5 - при изотопном анализе веществ с низкими потенциалами ионизации. Способ 6 благодаря большому энергетическому разбросу ионов обычно требует анализаторов с двойной фокусировкой даже для достижения разрешающей силы в несколько сотен единиц. Значения средних ионных токов, создаваемых ионным источником с ионизацией электронным ударом при энергии ионов в 40 - 100 эв и ширине щели источника Масс-спектрометры несколько десятков мкм (типичной для лабораторных М.-с.), составляют 10 -10 - 10 -9 а. Для других способов ионизации эти токи обычно меньше. «Мягкая» ионизация, т. е. ионизация молекул, сопровождаемая незначительной диссоциацией ионов, осуществляется с помощью электронов, энергия которых лишь на 1 - 3 эв превосходит энергию ионизации молекулы, а также с использованием способов 2, 3, 4. Получаемые при «мягкой» ионизации токи обычно Масс-спектрометры 10 -12 - 10 -14 а.

Регистрация ионных токов. Величины ионных токов, создаваемых в М.-с., определяют требования к их усилению и регистрации. Чувствительность применяемых в М.-с. усилителей Масс-спектрометры10 -15 - 10 -16 а при постоянной времени от 0,1 до 10 сек. Дальнейшее повышение чувствительности или быстродействия М.-с. достигается применением электронных умножителей, которые повышают чувствительность измерения токов в М.-с. до 10 -18 - 10 -19 а.

Примерно те же значения чувствительности достигаются при использовании фотографической регистрации ионов за счёт длительной экспозиции. Однако из-за малой точности измерения ионных токов и громоздкости устройств введения фотопластинок в вакуумную камеру анализатора фоторегистрация масс-спектров сохранила определенной значение лишь при очень точных измерениях масс, а также в тех случаях, когда необходимо одновременно регистрировать все линии масс-спектра из-за нестабильности источника ионов, например при элементном анализе в случае ионизации вакуумной искрой.

В СССР разрабатывается и выпускается много различной масс-спектральной аппаратуры. Принятая система индексов для М.-с. классифицирует приборы в основном не по типу устройства, а по назначению. Индекс состоит из двух букв (МИ - М.-с. изотопный, МХ - для химического анализа, МС - для физико-химических, в том числе структурных, исследований, МВ - прибор с высокой разрешающей способностью) и четырёх цифр, из которых первая указывает на используемый метод разделения ионов по массам (1 - в магнитном однородном поле, 2 - в магнитном неоднородном, 4 - магнито-динамический, 5 - время-пролётный, 6 - радиочастотный), вторая - на условия применения (1 - индикаторы, 2 - для производств, контроля, 3 - для лабораторных исследований, 4 - для спец. условий), а последние две являются номером модели. На рис. 12 показаны два М.-с., изготовленные в СССР. За рубежом М.-с. выпускаются несколько десятками фирм (США, Японии, ФРГ, Великобритании, Франции и Швеции).

Лит.: Астон Ф., Масс-спектры и изотопы, пер. с англ., М., 1948; Рафальсон А. Э., ШерешевскийА. М., Масс-спектрометрические приборы, М. - Л., 1968; Бейнон Дж., Масс-спектрометрия и её применение в органической химии, пер. с англ., М., 1964; Материалы 1 Всесоюзной конференции по масс-спектрометрии, Л., 1972; Джейрам Р., Масс-спектрометрия. Теория и приложения, пер. с англ., М., 1969; Полякова А. А., Хмельницкий Р. А., Масс-спектрометрия в органической химии, Л., 1972.

В. Л. Тальрозе.

Рис. 12. На столе большого масс-спектрометра с двойной фокусировкой для структурно-химического анализа МС-3301 с разрешающей силой RМасс-спектрометры5 ·10 4 лежит миниатюрный масс-спектрометр МХ-6407М (обведён квадратом), применявшийся для исследований ионосферы на искусственных спутниках Земли.

Рис. 10. Схема магнито-резонансного масс-анализатора; магнитное поле Н перпендикулярно плоскости рисунка.

Рис. 6. Схема радиочастотного масс-анализатора: 1, 2, 3 - сетки, образующие трёхсеточный каскад, на среднюю сетку 2 подано высокочастотное напряжение U вч. Ионы с определённой скоростью и, следовательно, определённой массой, внутри каскада ускоряясь высокочастотным полем, получают больший прирост кинетической энергии, достаточный для преодоления тормозящего поля и попадания на коллектор.

Рис. 5. Схема время-пролётного масс-анализатора. Пакет ионов с массами m 1 и m 2 (чёрные и белые кружки), «вброшенный» в анализатор через сетку 1, движется в дрейфовом пространстве 2 так, что тяжёлые ионы (m 1) отстают от лёгких (m 2); 3 - коллектор ионов.

Рис. 4. Пример масс-анализатора с двойной фокусировкой. Пучок ускоренных ионов, вышедших из щели S 1 источника ионов, последовательно проходит через электрическое поле цилиндрического конденсатора, который отклоняет ионы на 90°, затем через магнитное поле, отклоняющее ионы ещё на 60°, и фокусируется в щель S 2 приёмника коллектора ионов.

Рис. 3. Схема статического магнитного анализатора с однородным магнитным полем; S 1 и S 2 - щели источника и приёмника ионов; ОАВ - область однородного магнитного поля Н , перпендикулярного плоскости рисунка, тонкие сплошные линии - границы пучков ионов с разными m/е; r - радиус центральной траектории ионов.

Рис. 2. Масс-спектр ториевого свинца (δm 50% - ширина пика на полувысоте; δm 10% - ширина пика на уровне 1 / 10 от максимальной интенсивности).

Рис. 1. Скелетная схема масс-спектрометра: 1 - система подготовки и введения исследуемого вещества; 2 - ионный источник; 3 - масс-анализатор; 4 - приемник ионов; 5 - усилитель; 6 - регистрирующее устройство; 7 - ЭВМ; 8 - система электрического питания; 9 - откачные устройства. Пунктиром обведена вакуумируемая часть прибора.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Масс-спектрометры" в других словарях:

    масс-спектрометры - Приборы для разделения ионизиров. частиц вещ ва (молекул, атомов) по их массам, осн. на воздействии магн. и электрич. полей на пучки ионов, летящих в вакууме. В м. с. ионы регистрир. электрич. методами, в масс спектрографах — по потемнению… … Справочник технического переводчика

    Масс-спектрометры - приборы для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанные на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. В масс спектрометрах ионы регистрируются… … Энциклопедический словарь по металлургии

  • Введение
  • Краткая история масс-спектрометрии
  • Ионизация
  • Масс-анализаторы
  • Детектор
  • Природная и искусственная изотопия
  • Масс-спектрометры для изотопного анализа
  • Скорость сканирования
  • Разрешение
  • Динамический диапазон
  • Чувствительность
  • Какие бывают масс-спектрометры

Итак, масс-спектрометры используются для анализа органических соединений и неорганических.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами.

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС или LC/MS по английски. Cамые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Новый класс масс-спектрометров - это гибридные приборы. Гибридными их называют потому, что они, на самом деле, включают в себя два масс-спектрометра, по крайней мере один из которых, может работать как независимый прибор. Примерами таких приборов являются масс-спектрометр ионно-циклотронного резонанса FINNIGAN LTQ FT, в котором линейная квадрупольная ионная ловушка FINNIGAN LTQ может работать как индивидуальный прибор, детектирующий ионы после МС или МСn с помощью двух вторично-электронных умножителей, так и готовить и пересылать ионы в циклотронную ячейку, выталкивая их в направлении, параллельном оси квадруполя. Также гибридным является LTQ QRBITRAP, который работает совершенно аналогично. Преимущества таких схем очевидны, линейная ловушка обладает самой высокой чувствительностью, работает в режиме тандемной масс-спектрометрии с n до 10, осуществляет разнообразные интеллектуальные функции сканирований, а масс-спектрометр ионно-циклотронного резонанса и орбитальная ловушка ионов обладают высоким разрешением и могут с высочайшей точностью измерять отношения массы к заряду ионов. Для анализа элементного состава самыми привлекательными являются масс-спектрометры с индуктивно-связанной плазмой. С помощью этого прибора определяют из каких атомов составлено вещество. Этот же метод анализа может показывать и изотопный состав. Но лучше всего измерять изотопный состав с помощью специализированных изотопных приборов, регистрирующих ионы не на одном детекторе в разное время их прихода на него, а каждый ион на своем персональном коллекторе и одновременно (так называемое параллельное детектирование).

Однако, прежде чем перейти к приборам для измерения изотопного состава, кратко остановимся на том что такое изотопы.

Природная и искусственная изотопия Атомы состоят из ядра и электронных оболочек. Свойства атомов определяются тем, сколько протонов (положительно заряженных элементнарных частиц) содержит ядро. Ядро помимо протонов содержит и нейтроны. Природа распорядилась так, что при равном количестве протонов ядро может содержать разное количество нейтронов. Атомы с одинаковым количеством протонов в ядре, но с разным количеством нейтронов отличаются по массе на одну или несколько единиц атомной массы (а.е.м.) и называются изотопами. Большинство элементов имеют определенный набор стабильных изотопов. Радиоактивные изотопы не являются стабильными и распадаются с образованием стабильных изотопов. Природная распространенность изотопов для каждого элемента известна. Некоторые элементы в природе являются моноизотопными, то есть 100 % природной распространенности приходится на один изотоп (например, Al, Sc, Y, Rh, Nb и т.д.), а другие имеют множество стабильных изотопов (S, Ca, Ge, Ru, Pd, Cd, Sn, Xe, Nd, Sa и т.д.). В технологической деятельности люди научились изменять изотопный состав элементов с целью получения каких-либо специфических свойств материалов (например, U235 имеет способность к спонтанной цепной реакции и может использоваться в качестве топлива для атомных электростанций или атомной бомбы) или использования изотопных меток (например, в медицине).

Поскольку массы изотопов отличаются, а масс-спектрометрия измеряет массу, естественно, этот метод становится самым удобным для определения изотопного состава. В то же время, информация по изотопному составу помогает идентифицировать органические соединения и позволяет дать ответы на многие вопросы начиная от определения возраста пород для геологии и кончая определением фальсификатов многих продуктов и установлением места происхождения товаров и сырья.

Масс-спектрометры для изотопного анализа. Масс-спектрометры для определения изотопного состава должны быть очень точными. Для анализа изотопного состава легких элементов (углерод, водород, кислород. сера, азот и т.д.) используется ионизация электронным ударом. В этом случае годятся все методы ввода газовой фазы, как и в органических масс-спектрометрах (DELTA Plus ADVANTAGE, FINNIGAN DELTA Plus XL и FINNIGAN МАТ253).
Для анализа изотопов более тяжелых элементов используется термоионизация (FINNIGAN TRITON TI) или ионизация в индуктивно-связанной плазме c параллельным детектированием (FINNIGAN NEPTUNE, и одноколлекторным детектированием FINNIGAN ELEMENT2).
Практически во всех типах изотопных масс-спектрометров используются магнитные масс-анализаторы.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость.

Скорость сканирования. Масс-анализатор, как мы показывали выше, пропускает ионы с определенным соотношением массы и заряда в определенное время (кроме многоколлекторных приборов и ионно-циклотронного резонанса, орбитальной ловушки ионов). Для того, чтобы проанализировать все ионы по отношению их массы к заряду он должен сканировать, то есть параметры его поля должны за заданный промежуток времени пройти все значения, нужные для пропускания к детектору всех интересующих ионов. Эта скорость разворачивания поля называется скоростью сканирования и должна быть как можно больше (соответственно, время сканирования должно быть как можно меньше), поскольку масс-спектрометр должен успеть измерить сигнал за короткое время, например за время выхода хроматографического пика, которое может составлять несколько секунд. При этом, чем больше масс-спектров за время выхода хроматографического пика будет измерено, тем точнее будет описан хроматографический пик, тем менее вероятно будет проскочить мимо его максимального значения, а с помощью математической обработки определить является ли он индивидуальным и «доразделить» его с помощью масс-спектрометрии.
Самым медленным масс-анализатором является магнит, минимальное время его сканирования без особой потери чувствительности составляет доли секунды (MAT 95XP). Квадрупольный масс-анализатор может разворачивать спектр за десятые доли секунды (TSQ QUANTUM), а ионная ловушка еще быстрее (POLARISQ, FINNIGAN LCQ ADVANTAGE MAX, FINNIGAN LCQ DECA XP MAX), линейная ионная ловушка - еще быстрее (LTQ) и чуть медленнее масс-спектрометр ионно-циклотронного резонанса FINNIGAN LTQ FT.
Инновационный квадрупольный хромато-масс-спектрометр FINNIGAN TRACE DSQ и его экономичный аналог FINNIGAN FOCUS DSQ способны сканировать со скоростью около 11,000 а.е.м. в секунду. Это открывает новые возможности, например, можно практически одновременно получать полный масс-спектр соединения для его однозначной идентификации и вести селективный мониторинг ионов (SIM), на несколько порядков понижающий предел обнаружения.
Любое сканирование всех перечисленных выше масс-анализаторов является компромиссным - чем больше скорость сканирования, тем меньше времени тратиться на запись сигнала на каждое массовое число, тем хуже чувствительность. Однако, для обычного анализа скорости квадрупольного анализатора или ионной ловушки достаточно. Другой вопрос, когда речь идет о высокопроизводительном анализе сложных матриц. В этом случае было бы хорошо воспользоваться сверхбыстрой хроматографией (на тонких коротких быстро прогреваемых колонках). Для такой задачи лучше всего подойдет времяпролетный масс-спектрометр (TEMPUS). Он способен записывать масс-спектры со скоростью 40,000 в секунду!

Разрешение. Наглядно разрешение (разрешающую способность) можно определить, как возможность анализатора разделять ионы с соседними массами. Очень важно иметь возможность точно определять массу ионов, это позволяет вычислить атомную композицию иона или идентифицировать пептид путем сравнения с базой данных, сократив число кандидатов с тысяч и сотен до единиц или одного единственного. Для магнитных масс-анализаторов, для которых расстояние между пиками масс-спектра не зависит от масс ионов, разрешение представляет собой величину равную M/DM. Эта величина, как правило, определяется по 10 % высоте пика. Так например, разрешение 1000 означает, что пики с массами 100.0 а.е.м. и 100.1 а.е.м. отделяются друг от друга, то есть не накладываются вплоть до 10 % высоты.
Для анализаторов, у которых расстояние между пиками меняется в рабочем диапазоне масс (чем больше масса, тем меньше расстояние), таких как квадрупольные анализаторы, ионные ловушки, времяпролетные анализаторы, строго говоря, разрешение имеет другой смысл. Разрешение, определяемое как M/DM в данном случае, характеризует конкретную массу. Имеет смысл характеризовать эти масс-анализаторы по ширине пиков, величине, остающейся постоянной во всем диапазоне масс. Эта ширина пиков, обычно, измеряется на 50 % их высоты. Для таких приборов ширина пика на полувысоте равная 1 является неплохим показателем и означает, что такой масс-анализатор способен различить номинальные массы, отличающиеся на атомную единицу массы практически во всем его рабочем диапазоне. Номинальной массой или массовым числом называют ближайшее к точной массе иона целое число в шкале атомных единиц массы. Например, масса иона водорода Н+ равна 1.00787 а.е.м., а его массовое число равно 1. А такие масс-анализаторы, которые, в основном, измеряют номинальные массы, называют анализаторами низкого разрешения. Мы написали «в основном», потому что сегодня есть и такие масс-анализаторы, которые формально относятся к низкоразрешающим, а на деле таковыми уже не являются. Высокая технология, прежде всего самого передового разработчика Thermo Electron, уже сегодня предложила на рынок аналитического оборудования высокоразрешающие квадрупольные приборы. Так например, новейший FINNIGAN TSQQuantum легко работает при ширине пика масс-спектра на полувысоте 0.1 а.е.м. Знающие люди могут возразить: «Но такую ширину пика можно получить на каждом квадрупольном масс-спектрометре!» И они будут правы, действительно, каждый квадруполь можно отстроить до этого уровня разрешения. Но что произойдет при этом с сигналом? При переходе от ширины пика на полувысоте в 1 а.е.м. к 0.1 а.е.м. величина сигнала на всех квадруполях упадет практически на два порядка по величине. Но не на TSQ Quantum , на нем она уменьшится всего в два с половиной раза. Ионные ловушки в узком диапазоне масс могут работать как масс-спектрометры высокого разрешения, обеспечивая, как минимум, разделение пиков, отстоящих на 1/4 а.е.м. друг от друга. Масс-спектрометры с двойной фокусировкой (магнитной и электростатической), ионно-циклотронного резонанса - приборы среднего или высокого разрешения. Типичным для магнитного прибора разрешением является >60,000, а работа на уровне разрешения 10,000 - 20,000 является рутинной. На масс-спектрометре ионно-циклотронного резонанса на массе около 500 а.е.м. можно легко достигнуть разрешения 500,000, что позволяет проводить измерения массы ионов с точностью до 4-5 знака после запятой. Разрешения в несколько тысяч также можно добиваться при использовании времяпролетных масс-анализаторов, однако, на высоких массах, в области которых, собственно этот прибор имеет преимущество перед другими, и этого разрешения хватает лишь для того, чтобы измерить массу иона с точностью +/- десятки а.е.м.Как видно из вышесказанного, разрешение тесно связано с другой важной характеристикой - точностью измерения массы. Проиллюстрировать значение этой характеристики можно на простом примере. Массы молекулярных ионов азота (N2+)и монооксида углерода (СО+) составляют 28.00615 а.е.м. и 27.99491 а.е.м., соответственно (оба характеризуются одним массовым числом 28). Эти ионы будут регистрироваться масс-спектрометром порознь при разрешении 2500, а точное значение массы даст ответ - какой из газов регистрируется. Измерение точной массы доступно на приборах с двойной фокусировкой, на тандемном квадрупольном масс-спектрометре TSQ Quantum и на масс-спектрометрах ионно-циклотронного резонанса.

Динамический диапазон. Если мы анализируем смесь, содержащую 99.99 % одного соединения или какого-либо элемента и 0.01% какой-либо примеси, мы должны быть уверены, что правильно определяем и то и другое. Для того, чтобы быть уверенным в определении компонентов в этом примере, нужно иметь диапазон линейности в 4 порядка. Современные масс-спектрометры для органического анализа характеризуются динамическим диапазоном в 5-6 порядков, а масс-спектрометры для элементного анализа 9-12 порядков. Динамический диапазон в 10 порядков означает, что примесь в пробе будет видна даже тогда, когда она составляет 10 миллиграмм на 10 тонн.

Чувствительность. Это одна из важнейших характеристик масс-спектрометров. Чувствительность это величина, показывающая какое количество вещества нужно ввести в масс-спектрометр для того, чтобы его можно было детектировать. Для простоты будем рассматривать связанный с чувствительностью параметр - минимальное определяемое количество вещества, или порог обнаружения. Типичная величина порога обнаружения хорошего хромато-масс-спектрометра, используемого для анализа органических соединений, составляет 1 пикограмм при вводе 1 микролитра жидкости. Давайте представим себе что это такое. Если мы наберем специальным шприцом 1 микролитр жидкости (одна миллионная доля литра) и выпустим ее на листок чистой белой бумаги, то при ее рассмотрении в лупу мы увидим пятнышко, равное по размерам следу от укола тонкой иглой. Теперь представим себе, что мы бросили 1 грамм вещества (например, одну таблетку аспирина) в 1000 тонн воды (например, бассейн длиной 50 метров, шириной 10 метров и глубиной 2 метра). Тщательно перемешаем воду в бассейне, наберем шприцом 1 микролитр этой воды и заколем в хромато-масс-спектрометр. В результате анализа мы получим масс-спектр, который мы сможем сравнить с библиотечным спектром и методом отпечатков пальцев убедиться в том, что это действительно ацетилсалициловая кислота, иначе называемая аспирином.

Пределы обнаружения неорганических веществ, например, методом ICP/MS (FINNIGAN ELEMENT2) еще более впечатляющие. Здесь бассейн уже будет маловат для приготовления раствора с концентрацией, соответствующей пределу обнаружения. Предел обнаружения для FINNIGAN ELEMENT2 по ряду металлов составляет 1 ppq (одна доля на квадриллион). Это значит, что чувствительности прибора достаточна, чтобы детектировать 1 килограмм металла (например, ртути, свинца и т.д.) растворенного в озере Байкал (при условии его перемешивания и полного растворения)!

В масс-спектрометрии изотопов, например, достаточно 800 - 1000 молекул диоксида углерода (СО2, углекислый газ) чтобы получить сигнал углерода. Для того, чтобы продемонстрировать, с какими точностями и изотопными чувствительностями имеет дело изотопная масс-спектрометрия, прибегнем к следующей аллегории. Предположим на одну тысячу совершенно одинаковых яблок, каждое из которых весит 100 грамм, приходится 11 яблок, весящих на 8 % больше, то есть 108 грамм. Все эти яблоки собраны в одном мешке. Этот пример соотвествует соотношению изотопов углерода в природе - на 1000 атомов 12С приходится 11 атомов 13С. Изотопная масс-спектрометрия измеряет соотношения, то есть она способна различить не просто эти 11 яблок, а найти среди многих мешков те, в которых из 1000 стограммовых яблок не 11 стовосьми граммовых, а 10 или 12. Этот пример очень легок для изотопной масс-спектрометрии, на самом деле такие приборы как FINNIGAN DELTAPlus ADVANTAGE, DELTA Plus XP и FINNIGAN МАТ253способны определить разницу в один изотоп (одно сто восьмиграммовое яблоко) среди десяти миллионов атомов (десяти миллионов яблок).

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится еще много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий одиночному иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой. Так, например, паспортная характеристика DFS гласит, что 2,3,7,8-тетрахлоро-п-дибензодиоксин, введенный через хроматографическую колонку в количестве 10 фемтограмм даст пик, характеризующийся отношением сигнал/шум = 80: 1. Не достижимый ни на каком другом приборе результат!
По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения (TRACE DSQ II) имеют улучшенные характеристики благодаря ряду инноваций, примененных в них, например, использованию искривленного квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Зачем нужна масс-спектрометрия

Глубинные физические законы, передовые научные и инженерные разработки, высокотехнологичные вакуумные системы, высокие электрические напряжения, самые лучшие материалы, высочайшее качество их обработки, современнейшая быстродействующая цифровая и аналоговая электроника и компьютерная техника, изощренное программное обеспечение - вот из чего сложен современный масс-спектрометр. И для чего же все это? Для ответа на один из важнейших вопросов мироздания - из чего сложена материя. Но это вопрос не высокой науки, а каждодневной жизни человека.

Например, разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Масс-спектрометрия дала в руки исследователей инструмент, позволяющий идентифицировать белки, определять какие изменения произошли с их структурой вследствие различных взаимодействий, при их воспроизводстве, определить пути метаболизма различных лекарственных средств и других соединений и идентифицировать метаболиты, разрабатывать новые целевые лекарственные средства. Масс-спектрометрия - единственный метод, решающий все эти и многие другие задачи аналитической биохимии.
Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надежна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соотвествие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин.

Существование ядерной энергетики немыслимо без масс-спектрометрии. С ее помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter Pylori и является самым надежным из всех методов диагностики.
ВЭЖХ/МС системы являются основным аналитическим инструментом при разработке новых лекарственных средств. Без этого метода не может обходиться и контроль качества производимых лекарств и выявления такого распространенного явления как их фальсификация.
Протеомика дала в руки медицины возможность сверхранней диагностики самых страшных заболеваний человечества - раковых опухолей и кардиологических дисфункций. Определение специфических белков, называемых биомаркерами, позволяет проводить раннюю диагностику в онкологии и кардиологии.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепереработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.