Меню

Термоядерная реакция синтез ядер схема. Термоядерная энергетика: надежда человечества

Дизайн

Масса представляет собой особую форму энергии, о чем и свидетельствует известная формула Эйнштейна E = mc 2 . Из нее следует возможность преобразования массы в энергию и энергии в массу. И такие реакции на внутриатомном уровне вещества реально имеют место. В частности, часть массы атомного ядра может превращаться в энергию, и происходит это двумя путями. Во-первых, крупное ядро может распасться на несколько мелких — такой процесс называется реакцией распада . Во-вторых, несколько более мелких ядер могут объединиться в одно более крупное — это так называемая реакция синтеза . Реакции ядерного синтеза во Вселенной распространены очень широко — достаточно упомянуть, что именно из них черпают энергию звезды. Ядерный распад сегодня служит одним из основных источников энергии для человечества — он используется на атомных электростанциях. И при реакции распада, и при реакции синтеза совокупная масса продуктов реакции меньше совокупной массы реагентов. Эта-то разница в массе и преобразуется в энергию по формуле E = mc 2 .

Распад

В природе уран встречается в форме нескольких изотопов, один из которых — уран-235 (235 U) — самопроизвольно распадается с выделением энергии. В частности, при попадании достаточно быстрого нейтрона в ядро атома 235 U последнее распадается на два крупных куска и ряд мелких частиц, включая, обычно, два или три нейтрона. Однако сложив массы крупных фрагментов и элементарных частиц, мы недосчитаемся определенной массы по сравнению с массой исходного ядра до его распада под воздействием удара нейтрона. Эта-то недостающая масса и выделяется в виде энергии, распределенной среди получившихся продуктов распада — прежде всего, кинетической энергии (энергии движения). Стремительно движущиеся частицы разлетаются от места распада и сталкиваются с другими частицами вещества, разогревая их.

Они представляют собой стремительно разлетающиеся от места распада частицы, при этом далеко они не улетают, врезаясь в соседние атомы вещества и разогревая их. Таким образом, энергия, порождаемая ядерным распадом, преобразуется в теплоту окружающего вещества.

В уране, добываемом из природной урановой руды, изотопа урана-235 содержится всего 0,7% от общей массы урана — остальные 99,3% приходятся на долю относительно устойчивого (слабо радиоактивного) изотопа 238 U, который просто поглощает свободные нейтроны, не распадаясь под их воздействием. Поэтому для использования урана в качестве топлива в ядерных реакторах его нужно предварительно обогатить — то есть довести содержание радиоактивного изотопа 235 U до уровня не менее 5%.

После этого уран-235 в составе обогащенного природного урана в атомном реакторе распадается под воздействием бомбардировки нейтронами. В результате из одного ядра 235 U выделяется в среднем 2,5 новых нейтрона, каждый из которых вызывает распад еще 2,5 ядер, и запускается так называемая цепная реакция. Условием для продолжения незатухающей реакции распада урана-235 является превышение числа выделяемых распадающимися ядрами нейтронов числа нейтронов, покидающих урановый конгломерат; в этом случае реакция продолжается с выделением энергии.

В атомной бомбе реакция носит умышленно неконтролируемый характер, в результате чего за доли секунды распадается огромное число ядер 235 U и выделяется колоссальная по своей разрушительности взрывная энергия. В атомных реакторах, используемых в энергетике, реакцию распада необходимо строго контролировать с целью дозирования выделяемой энергии. Хорошим поглотителем нейтронов является кадмий — его-то обычно и используют для управления интенсивностью распада в реакторах АЭС. Кадмиевые стержни погружают в активную зону реактора до уровня, необходимого для снижения скорости выделения свободной энергии до технологически разумных пределов, а в случае падения энерговыделения ниже необходимого уровня частично выводят стержни из активной зоны реакции, после чего реакция распада интенсифицируется до необходимого уровня. Выделившаяся тепловая энергия затем в обычном порядке (посредством турбогенераторов) преобразуется в электрическую.

Синтез

Термоядерный синтез — реакция прямо противоположная реакции распада по своей сути: более мелкие ядра объединяются в более крупные. Самая распространенная во Вселенной реакция вообще — это реакция термоядерного синтеза ядер гелия из ядер водорода: она непрерывно протекает в недрах практически всех видимых звезд. В чистом виде она выглядит так: четыре ядра водорода (протона) образуют атом гелия (2 протона + 2 нейтрона) с выделением ряда других частиц. Как и в случае реакции распада атомного ядра совокупная масса образовавшихся частиц оказывается меньше массы исходного продукта (водорода) — она и выделяется в виде кинетической энергии частиц-продуктов реакции, за счет чего звезды и разогреваются.

В недрах звезд реакция термоядерного синтеза происходит не единовременно (когда сталкиваются 4 протона), а в три этапа. Сначала из двух протонов образуется ядро дейтерия (один протон и один нейтрон). Затем, после попадания в ядро дейтерия еще одного протона, образуется гелий-3 (два протона и один нейтрон) плюс другие частицы. И наконец, два ядра гелия-3 сталкиваются, образуя гелий-4, два протона, а также другие частицы. Однако по совокупности эта трехэтапная реакция дает чистый эффект образования из четырех протонов ядра гелия-4 с выделением энергии, уносимой быстрыми частицами, прежде всего фотонами (см. Эволюция звезд).

Естественная реакция термоядерного синтеза происходит в звездах; искусственная — в водородной бомбе. Увы, человек до сих пор не сумел найти средств для того, чтобы направить термоядерный синтез в управляемое русло и научиться получать за счет него энергию для использования в мирных целях. Однако ученые не теряют надежды на достижение положительных результатов в области получения «мирной и дешевой» термоядерной энергии уже в обозримом будущем — для этого главное научиться удерживать высокотемпературную плазму либо посредством лазерных лучей, либо посредством сверхмощных тороидальных электромагнитных полей (см.

– это процесс, в ходе которого два атомных ядра объединяются, формируя тяжелее ядро. Обычно этот процесс сопровождается выделением энергии. Ядерный синтез является источником энергии в звездах и водородной бомбе.
Для сближения атомных ядер на расстояние, достаточное для того, чтобы произошла ядерная реакция, даже для самого легкого элемента, водорода, нужна очень значительное количество энергии. Но, в случае легких ядер, в результате объединения двух ядер с образованием более тяжелого ядра выделяется значительно больше энергии, чем уходит на преодоление кулоновского отталкивания между ними. Благодаря этому ядерный синтез – очень перспективный источник энергии и является одним из основных направлений исследования современной науки.
Количество энергии, выделяемой в большинстве ядерных реакций намного больше, чем в химических реакциях, так как энергия связи нуклонов в ядре значительно больше, чем энергии связи электронов в атоме. Например, энергия ионизации, которая получается при связывании электрона с протоном с образованием атома водорода, составляет 13.6 электрон-вольт – меньше, чем одну миллионную от 17 МэВ, выделяющиеся при реакции дейтерия с тритием, которая описана ниже.
В атомном ядре действуют два типа взаимодействия: сильное взаимодействие, удерживающее протоны и нейтроны вместе и значительно слабее электростатическое отталкивание между одинаково заряженными протонами ядра, пытается разорвать ядро. Сильное взаимодействие проявляется лишь на очень коротких расстояниях между протонами и нейтронами, непосредственно граничащих друг с другом. Это также означает, что протоны и нейтроны на поверхности ядра содержатся слабее, чем протоны и нейтроны внутри ядра. Сила электростатического отталкивания взамен действует на любых расстояниях и является обратно пропорциональной квадрату расстояния между зарядами, то есть каждый протон в ядре взаимодействует с каждым другим протоном в ядре. Это приводит к тому, что с увеличением размера ядра силы, удерживающие ядро возрастают до определенного атомного номера (атом железа), а затем начинают ослабевать. Начиная с урана энергия связи становится отрицательной и ядра тяжелых элементов становятся нестабильными.
Таким образом для осуществления реакции ядерного синтеза необходимо затратить определенную энергию на преодоление силы электростатического отталкивания между двумя атомными ядрами и свести их на расстояние, где начинает проявляться сильное взаимодействие. Энергия, необходимая для преодоления силы электростатического отталкивания, называется кулоновским барьером (Coulomb barrier).
Кулоновский барьер низкий для изотопов водорода, поскольку они имеют в ядре только один протон. Для DT смеси результирующий энергетический барьер составляет 0.1 МэВ. Для сравнения, чтобы убрать электрон с атома водорода требуется всего 13 эВ, что в 7500 раз меньше. Когда реакция синтеза завершается, новое ядро переходит на более низкий энергетический уровень и выделяет дополнительную энергию, излучая нейтрон с энергией 17.59 MeV, что существенно больше, чем нужно для запуска реакции. То есть реакция DT синтеза очень экзотермической и является источником энергии.
Если ядра является частью плазмы вблизи состояния теплового равновесия, реакция синтеза называется термоядерным синтезом. Поскольку температура является мерой средней кинетической энергии частиц, нагрев плазму можно предоставить ядрам достану энергию для преодоления барьера в 0.1 MэВ. Переведя эВ в Кельвина получим температуру свыше 1 ГК, что является чрезвычайно высокой температурой.
Есть однако два явления, которые позволяют снизить требуемую температуру реакции. Во-первых, температура отражающий среднюю кинетическую энергию, т.е. даже при низких температурах, чем эквивалент 0.1 МэВ, часть ядер будет иметь энергию существенно выше 0.1 МэВ, остальные будут иметь энергию существенно ниже. Во-вторых, следует учесть явление квантового туннелирования, когда ядра преодолевают барьер Кулона, имея недостаточно энергии. Это позволяет получить (медленные) реакции синтеза при низких температурах.
Важным для понимания реакции синтеза является понятие поперечного сечения реакции?: меры вероятности реакции синтеза как функции относительной скорости двух взаимодействующих ядер. Для термоядерной реакции синтеза удобнее рассматривать среднее значение распределения произведения поперечного сечения на скорость ядра . Используя его, можно записать скорость реакции (слияние ядер на объем на время) как

Где n 1 и n 2 это плотность реагентов. возрастает от нуля при комнатной температуре до значительной величины уже при температурах }