Меню

Электронная конфигурация электрона. Электронная конфигурация атома -схемы и модели

Пол

Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

— принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

— принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

— правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

Примеры построения электронных конфигураций атомов

Примеры построения электронных конфигураций атомов приведены в таблице 1.

Таблица 1. Примеры построения электронных конфигураций атомов

Электронная конфигурация

Применяемые правила

Принцип Паули, правила Клечковского

Правило Хунда

1s 2 2s 2 2p 6 4s 1

Правила Клечковского

Определите, атомы каких из указанных в ряду элементов имеют на внешнем энергетическом уровне четыре электрона.

Ответ: 35

Пояснение:

Количество электронов на внешнем энергетическом уровне (электронном слое) элементов главных подгрупп равно номеру группы.
Таким образом, из представленных вариантов ответов подходят кремний и углерод, т.к. они находятся в главной подгруппе четвертой группы таблицы Д.И. Менделеева (IVA группа), т.е. верны ответы 3 и 5.

Определите, у атомов каких их указанных в ряду элементов в основном состоянии число неспаренных электронов на внешнем уровне равно 1.

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

Барий — элемент главной подгруппы второй группы и шестого периода Периодической системы Д. И. Менделеева, следовательно, электронная конфигурация его внешнего слоя будет 6s 2 . На внешнем 6s s -орбитали, атома бария расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, и электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1: на 3s -подуровне (состоит из одной s -орбитали) расположено 2 спаренных электрона с противоположными спинами (полное заполнение), а на 3p -подуровне — один неспаренный электрон. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 : на 2s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 2p p -орбиталей (p x , p y , p z ) — три неспаренных электрона, каждый из которых находится на каждой орбитали. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 : на 3s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 3p -подуровне, состоящего из трех p -орбиталей (p x , p y , p z ) — 5 электронов: 2 пары спаренных электронов на орбиталях p x , p y и один неспаренный — на орбитали p z. Таким образом, у хлора в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Кальций — элемент главной подгруппы второй группы и четвертого периода Периодической системы Д. И. Менделеева. Электронная конфигурация его внешнего слоя схожа с электронной конфигурацией атома бария. На внешнем 4s -подуровне, состоящем из одной s -орбитали, атома кальция расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Определите, у атомов каких их указанных в ряду элементов все валентные электроны расположены на 4s -энергетическом подуровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

s 2 3p 5 , т.е. валентные электроны хлора расположены на 3s- и 3p -подуровнях (3-ий период).

Калий — элемент главной подгруппы первой группы и четвертого периода Периодической системы, и электронная конфигурация внешнего слоя атома калия — 4s 1 , т.е. единственный валентный электрон атома калия расположен на 4s -подуровне (4-ый период).

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы, электронная конфигурация внешнего слоя атома брома — 4s 2 4p 5 , т.е. валентные электроны атома брома расположены на 4s- и 4p -подуровнях (4-ый период).

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома фтора — 2s 2 2p 5 , т.е. валентные электроны атома фтора расположены на 2s- и 2p- подуровнях. Однако, ввиду высокой электроотрицательности фтора только единственный электрон, расположенный на 2p- подуровне, участвует в образовании химической связи.

Кальций — элемент главной подгруппы второй группы и четверного периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 4s 2 , т.е. валентные электроны расположены на 4s -подуровне (4-ый период).

Определите, у атомов каких их указанных в ряду элементов валентные электроны расположены на третьем энергетическом уровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , т.е. валентные электроны хлора расположены на третьем энергетическом уровне (3-ий период).

s 2 2p 3 , т.е. валентные электроны азота расположены на втором энергетическом уровне (2-ой период).

Углерод — элемент главной подгруппы четвертой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 , т.е. валентные электроны атома углерода расположены на втором энергетическом уровне (2-ой период).

Бериллий — элемент главной подгруппы второй группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома бериллия — 2s 2 , т.е. валентные электроны атома бериллия расположены на втором энергетическом уровне (2-ой период).

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 3s 2 3p 3 , т.е. валентные электроны атома фосфора расположены на третьем энергетическом уровне (3-ий период).

Определите, у атомов каких их указанных в ряду элементов на d -подуровнях электронов нет.

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация атома хлора — 1s 2 2s 2 2p 6 3s 2 3p 5 , т.е. d -подуровня у атома хлора не существует.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома фтора — 1s 2 2s 2 2p 5 , т.е. d -подуровня у атома фтора также не существует.

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома брома — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 , т.е. у атома брома существует полностью заполненный 3d -подуровень.

Медь — элемент побочной подгруппы первой группы и четвертого периода Периодической системы, электронная конфигурация атома меди — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 , т.е. у атома меди существует полностью заполненный 3d -подуровень.

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 , т.е. у атома железа существует незаполненный 3d -подуровень.

Определите, атомы каких из указанных в ряду элементов относятся к s -элементам.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Гелий — элемент главной подгруппы второй группы и первого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома гелия — 1s 2 , т.е. валентные электроны атома гелия расположены только на 1s -подуровне, следовательно, гелий можно отнести к s -элементам.

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фосфора — 3s 2 3p 3 , следовательно, фосфор относится к p -элементам.

s 2 3p 1 , следовательно, алюминий относится к p -элементам.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 , следовательно, хлор относится к p -элементам.

Литий — элемент главной подгруппы первой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома лития — 2s 1 , следовательно, литий относится к s -элементам.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 np 2 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Бор — элемент главной подгруппы третьей группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома бора в основном состоянии — 2s 2 2p 1 . При переходе атома бора в возбужденное состояние электронная конфигурация становится 2s 1 2p 2 за счет перескока электрона с 2s- на 2p- орбиталь.

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние электронная конфигурация становится 3s 1 3 p 2 за счет перескока электрона с 3s- на 3p- орбиталь.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фтора — 3s 2 3p 5 . В данном случае в возбужденном состоянии невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние.

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. И. Менделеева, являются щелочными металлами, у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние.

Атом азота не способен переходить в возбужденное состояние т.к. заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали.

Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2 .

Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 . При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3 .

Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, т.е. это p -элементы. Все p -элементы расположены в 6-ти последних ячейках каждого периода в группе, номер которой равен сумме электронов на s и p подуровнях внешнего слоя, т.е. 2+3 = 5. Таким образом искомые элементы — азот и фосфор.

Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34
Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5

Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень.

Запишите в поле ответа номера выбранных элементов.

Ответ: 13

Пояснение:

Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него.

Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34

До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

s 1 np 3 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 4 электрона (1+3). Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода.

Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 (при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь).

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

Формула внешнего энергетического уровня ns 2 np 4 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 6 электронов (2+4). Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе.

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Определите, атомы каких из элементов имеет конфигурацию внешнего электронного уровня ns 2 np 3 .

Ответ: 45

Определите, атомы каких из указанных в ряду элементов в основном состоянии не содержат неспаренных электронов.
Запишите в поле ответа номера выбранных элементов.

Распределение электронов по различным АО называют электронной конфигурацией атома . Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям .

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронографических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода электронная формула: 1s 1 .

Более полно строение электронных уровней можно описать с помощью электронографических диаграмм, где распределение по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны изображаются стрелками или ↓ в зависимости от знака спинового квантового числа. Электронографическая диаграмма атома водорода:

Принцип построения электронных конфигураций многоэлектронных атомов состоит в добавлении протонов и электронов к атому водорода. Распределение электронов по энергетическим уровням и подуровням подчиняются рассмотренным ранее правилам: принципу наименьшей энергии, принципу Паули и правилу Хунда.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s -элементы, p -элементы, d -элементы, f -элементы.

В атоме гелия Не (Z=2) второй электрон занимает 1s -орбиталь, его электронная формула: 1s 2 . Электронографическая диаграмма:

Гелием заканчивается первый самый короткий период Периодической системы элементов. Электронную конфигурацию гелия обозначают .

Второй период открывает литий Li (Z=3), его электронная формула:
Электронографическая диаграмма:

Далее приведены упрощенные электронографические диаграммы атомов элементов, орбитали одного энергетического уровня которых расположены на одной высоте. Внутренние, полностью заполненные подуровни, не показаны.

После лития следует бериллий Ве (Z=4), в котором дополнительный электрон заселяет 2s -орбиталь. Электронная формула Ве: 2s 2

В основном состоянии следующий электрон бора В (z=5) занимает 2р -орбиталь, В:1s 2 2s 2 2p 1 ; его электронографическая диаграмма:

Следующие пять элементов имеют электронные конфигурации:

С (Z=6): 2s 2 2p 2 N (Z=7): 2s 2 2p 3

O (Z=8): 2s 2 2p 4 F (Z=9): 2s 2 2p 5

Ne (Z=10): 2s 2 2p 6

Приведенные электронные конфигурации определяются правилом Хунда.

Первый и второй энергетические уровни неона полностью заполнены. Обозначим его электронную конфигурацию и будем использовать в дальнейшем для краткости записи электронных формул атомов элементов.

Натрий Na (Z=11) и Mg (Z=12) открывают третий период. Внешние электроны занимают 3s -орбиталь:

Na (Z=11): 3s 1

Mg (Z=12): 3s 2

Затем, начиная с алюминия (Z=13), заполняется 3р -подуровень. Третий период заканчивается аргоном Ar (Z=18):

Al (Z=13): 3s 2 3p 1

Ar (Z=18): 3s 2 3p 6

Элементы третьего периода отличаются от элементов второго тем, что у них имеются свободные 3d -орбитали, которые могут участвовать в образовании химической связи. Это объясняет проявляемые элементами валентные состояния.

В четвертом периоде, в соответствии с правилом (n +l ), у калия К (Z=19) и кальция Са (Z=20) электроны занимают 4s -подуровень, а не 3d . Начиная со скандия Sc (Z=21) и кончая цинком Zn (Z=30), происходит заполнение 3d -подуровня:

Электронные формулы d -элементов можно представить в ионном виде: подуровни перечисляются в порядке возрастания главного квантового числа, а при постоянном n – в порядке увеличения орбитального квантового числа. Например, для Zn такая запись будет выглядеть так:
Обе эти записи эквивалентны, но приведенная ранее формула цинка правильно отражает порядок заполнения подуровней.

В ряду 3d -элементов у хрома Сr (Z=24) наблюдается отклонение от правила (n +l ). В соответствии с этим правилом конфигурация Сr должна выглядеть так:
Установлено, что его реальная конфигурация -
Иногда этот эффект называют «провалом» электрона. Подобные эффекты объясняются повышенной устойчивостью наполовину (p 3 , d 5 , f 7) и полностью (p 6 , d 10 , f 14) заполненных подуровней.

Отклонения от правила (n +l ) наблюдаются и у других элементов (табл. 2). Это связано с тем, что с увеличение главного квантового числа различия между энергиями подуровней уменьшаются.

Далее происходит заполнение 4p -подуровня (Ga - Kr). В четвертом периоде содержится всего 18 элементов. Аналогично происходит заполнение 5s -, 4d - и 5p - подуровней у 18-ти элементов пятого периода. Отметим, что энергия 5s - и 4d -подуровней очень близки, и электрон с 5s -подуровня может легко переходить на 4d -подуровень. На 5s -подуровне у Nb, Mo, Tc, Ru, Rh, Ag находится только один электрон. В основном состоянии 5s -подуровень Pd не заполнен. Наблюдается «провал» двух электронов.

Таблица 2

Исключения из (n +l ) – правила для первых 86 элементов

Электронная конфигурация

по правилу (n +l )

фактическая

4s 2 3d 4

4s 2 3d 9

5s 2 4d 3

5s 2 4d 4

5s 2 4d 5

5s 2 4d 6

5s 2 4d 7

5s 2 4d 8

5s 2 4d 9

6s 2 4f 1 5d 0

6s 2 4f 2 5d 0

6s 2 4f 8 5d 0

6s 2 4f 14 5d 7

6s 2 4f 14 5d 8

6s 2 4f 14 5d 9

4s 1 3d 5

4s 1 3d 10

5s 1 4d 4

5s 1 4d 5

5s 1 4d 6

5s 1 4d 7

5s 1 4d 8

5s 0 4d 10

5s 1 4d 10

6s 2 4f 0 5d 1

6s 2 4f 1 5d 1

6s 2 4f 7 5d 1

6s 0 4f 14 5d 9

6s 1 4f 14 5d 9

6s 1 4f 14 5d 10

В шестом периоде после заполнения 6s -подуровня у цезия Cs (Z=55) и бария Ba (Z=56) следующий электрон, согласно правилу (n +l ), должен занять 4f -подуровень. Однако у лантана La (Z=57) электрон поступает на 5d -подуровень. Заполненный на половину (4f 7) 4f -подуровень обладает повышенной устойчивостью, поэтому у гадолиния Gd (Z=64), следующего за европием Eu (Z=63), на 4f -подуровне сохраняется прежнее количество электронов (7), а новый электрон поступает на 5d -подуровень, нарушая правило (n +l ). У тербия Tb (Z=65) очередной электрон занимает 4f -подуровень и происходит переход электрона с 5d -подуровня (конфигурация 4f 9 6s 2). Заполнение 4f -подуровня заканчивается у иттербия Yb (Z=70). Следующий электрон атома лютеция Lu занимает 5d -подуровень. Его электронная конфигурация отличается от конфигурации атома лантана только полностью заполненным 4f -подуровнем.

В настоящее время в Периодической системе элементов Д.И. Менделеева под скандием Sc и иттрием Y располагаются иногда лютеций (а не лантан) как первый d -элемент, а все 14 элементов перед ним, включая лантан, вынося в особую группу лантаноидов за пределы Периодической системы элементов.

Химические свойства элементов определяются, главным образом, структурой внешних электронных уровней. Изменение числа электронов на третьем снаружи 4f -подуровне слабо отражается на химических свойствах элементов. Поэтому все 4f -элементы схожи по своим свойствам. Затем в шестом периоде происходит заполнение 5d -подуровня (Hf – Hg) и 6p -подуровня (Tl – Rn).

В седьмом периоде 7s -подуровень заполняется у франция Fr (Z=87) и радия Ra (Z=88). У актиния наблюдается отклонение от правила (n +l ), и очередной электрон заселяет 6d -подуровень, а не 5f . Далее следует группа элементов (Th – No) с заполняющимся 5f -подуровнем, которые образуют семейство актиноидов . Отметим, что 6d - и 5f - подуровни имеют столь близкие энергии, что электронная конфигурация атомов актиноидов часто не подчиняется правилу (n +l ). Но в данном случае значение точной конфигурации 5f т 5d m не столь важно, поскольку она довольно слабо влияет на химические свойства элемента.

У лоуренсия Lr (Z=103) новый электрон поступает на 6d -подуровень. Этот элемент иногда помещают в Периодической системе под лютецием. Седьмой период не завершен. Элементы 104 – 109 неустойчивы и их свойства малоизвестны. Таким образом, с ростом заряда ядра периодически повторяются сходные электронные структуры внешних уровней. В связи с этим следует ожидать и периодического изменения различных свойств элементов.

Периодическое изменение свойств атомов химических элементов

Химические свойства атомов элементов проявляются при их взаимодействии. Типы конфигураций внешних энергетических уровней атомов определяют основные особенности их химического поведения.

Характеристиками атома каждого элемента, которые определяют его поведение в химических реакциях являются энергия ионизации, сродство к электрону, электроотрицательность.

Энергия ионизации – это энергия, необходимая для отрыва и удаления электрона от атома. Чем ниже энергия ионизации, тем выше восстановительная способность атома. Поэтому энергия ионизации является мерой восстановительной способности атома.

Энергия ионизации, необходимая для отрыва первого электрона, называется первой энергией ионизации I 1 . Энергия, необходимая для отрыва второго электрона, называется второй энергией ионизации I 2 и т.д.. При этом имеет место следующее неравенство

I 1 < I 2 < I 3 .

Отрыв и удаление электрона от нейтрального атома происходит легче, чем от заряженного иона.

Максимальное значение энергии ионизации соответствует благородным газам. Минимальное значение энергии ионизации имеют щелочные металлы.

В пределах одного периода энергия ионизации изменяется немонотонно. Вначале она снижается при переходе от s-элементов к первым р-элементам. Затем у последующих р-элементов она повышается.

В пределах одной группы с увеличением порядкового номера элемента энергия ионизации уменьшается, что обусловлено увеличением расстояния между внешним уровнем и ядром.

Сродство к электрону – это энергия (обозначается через Е), которая выделяется при присоединении электрона к атому. Принимая электрон, атом превращается в отрицательно заряженный ион. Сродство к электрону в периоде возрастает, а в группе, как правило, убывает.

Галогены имеют самое высокое сродство к электрону. Присоединяя недостающий для завершения оболочки электрон, они приобретают законченную конфигурацию атома благородного газа.

Электроотрицательность – это сумма энергии ионизации и сродства к электрону

Электроотрицательность растёт в периоде и убывает в подгруппе.

Атомы и ионы не имеют строго определенных границ в силу волновой природы электрона. Поэтому радиусы атомов и ионов определяют условно.

Наибольшее увеличение радиуса атомов наблюдается у элементов малых периодов, у которых происходит заполнение только внешнего энергетического уровня, что характерно для s- и р-элементов. Для d- и f-элементов наблюдается более плавное увеличение радиуса с ростом заряда ядра.

В пределах подгруппы радиус атомов увеличивается, так как растёт число энергетических уровней.

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.
  2. Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.
    • Например, атом натрия с зарядом -1 будет иметь дополнительный электронв добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
  3. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняет различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:
    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой "s") содержит единственную орбиталь, и, согласноПринципу Паули , одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
  4. Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.
    • Вот, например, простейшая электронная конфигурация:1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это - электронная конфигурация нейтрального атома неона (атомный номер неона -10).
  5. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий:
  6. 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.
  • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид:

1s 2

2s 2 2p 6

3s 2 3p 6

4s 2 3d 10 4p 6

5s 2 4d 10 5p 6

6s 2 4f 14 5d 10 6p 6

7s 2 5f 14 6d 10 7p 6

  • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  • Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.
    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид:1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, азатем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  • Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:
    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание - элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  • Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называютсяблагородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:
    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид:4s 2 3d 10 .

    Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено»), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

    Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

    На рисунке 5 показана схема подразделения энергетических уровней на подуровни.

    S-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (s = 1) располагается на этой орбитали и неспарен. Поэтому его электронная формула или электронная конфигурация будет записываться так: 1s 1 . В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой (1 ...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как показатель степени), показывает число электронов на подуровне.

    Для атома гелия Не, имеющего два спаренных электрона на одной s-орбитали, эта формула: 1s 2 .

    Электронная оболочка атома гелия завершена и очень устойчива. Гелий — это благородный газ.

    На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уровня (2s-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны 1s-орбитали (n = 2).

    Вообще, для каждого значения n существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения n.

    Р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с n = 2, имеет три р-орбитали. С увеличением значения n электроны анимают р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

    У элементов второго периода (n = 2) заполняется сначала одна в-орбиталь, а затем три р-орбитали. Электронная формула 1л: 1s 2 2s 1 . Электрон слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li+.

    В атоме бериллия Ве 0 четвертый электрон также размещается на 2s-орбитали: 1s 2 2s 2 . Два внешних электрона атома бериллия легко отрываются — Ве 0 при этом окисляется в катион Ве 2+ .

    У атома бора пятый электрон занимает 2р-орбиталь: 1s 2 2s 2 2р 1 . Далее у атомов С, N, О, Е идет заполнение 2р-орбиталей, которое заканчивается у благородного газа неона: 1s 2 2s 2 2р 6 .

    У элементов третьего периода заполняются соответственно Зв- и Зр-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

    Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, то есть записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул.

    У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4я- и 5я-орбитали: 19 К 2, 8, 8, 1; 38 Sr 2, 8, 18, 8, 2. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d- и 4d- орбитали соответственно (у элементов побочных подгрупп): 23 V 2, 8, 11, 2; 26 Tr 2, 8, 14, 2; 40 Zr 2, 8, 18, 10, 2; 43 Тг 2, 8, 18, 13, 2. Как правило, тогда, когда будет заполнен предыдущий d-подуровень, начнет заполняться внешний (соответственно 4р- и 5р) р-подуровень.

    У элементов больших периодов — шестого и незавершенного седьмого — электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступят на внешний в-подуровень: 56 Ва 2, 8, 18, 18, 8, 2; 87Гг 2, 8, 18, 32, 18, 8, 1; следующий один электрон (у Nа и Ас) на предыдущий (p-подуровень: 57 Lа 2, 8, 18, 18, 9, 2 и 89 Ас 2, 8, 18, 32, 18, 9, 2.

    Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4f- и 5f-орбитали соответственно у лантаноидов и актиноидов.

    Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73 Та 2, 8,18, 32,11, 2; 104 Rf 2, 8,18, 32, 32,10, 2, — и, наконец, только после полного заполнения десятью электронами сйгоду-ровня будет снова заполняться внешний р-подуровень:

    86 Rn 2, 8, 18, 32, 18, 8.

    Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек — записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

    В заключение еще раз рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И.Менделеева. Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

    В атоме гелия первый электронный слой завершен — в нем 2 электрона.

    Водород и гелий — s-элементы, у этих атомов заполняется электронами s-орбиталь.

    Элементы второго периода

    У всех элементов второго периода первый электронный слой заполнен и электроны заполняют е- и р-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала s-, а затем р) и правилами Паули и Хунда (табл. 2).

    В атоме неона второй электронный слой завершен — в нем 8 электронов.

    Таблица 2 Строение электронных оболочек атомов элементов второго периода

    Окончание табл. 2

    Li, Ве — в-элементы.

    В, С, N, О, F, Nе — р-элементы, у этих атомов заполняются электронами р-орбитали.

    Элементы третьего периода

    У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать Зs-, 3р- и Зd-подуровни (табл. 3).

    Таблица 3 Строение электронных оболочек атомов элементов третьего периода

    У атома магния достраивается Зs-электронная орбиталь. Nа и Mg— s-элементы.

    В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными Зd-орбитали.

    Все элементы от Аl до Аг — р-элементы. s- и р-элементы образуют главные подгруппы в Периодической системе.

    У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень (табл. 4), так как он имеет меньшую энергию, чем Зй-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода: 1) обозначим условно графическую электронную формулу аргона так:
    Аr;

    2) не будем изображать подуровни, которые у этих атомов не заполняются.

    Таблица 4 Строение электронных оболочек атомов элементов четвертого периода

    К, Са — s-элементы, входящие в главные подгруппы. У атомов от Sс до Zn заполняется электронами Зй-подуровень. Это Зй-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

    Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4я- на Зй-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций Зd 5 и Зd 10:

    В атоме цинка третий электронный слой завершен — в нем заполнены все подуровни 3s, Зр и Зd, всего на них 18 электронов.

    У следующих за цинком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень: Элементы от Gа до Кr — р-элементы.

    У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f- подуровни.

    У элементов пятого периода идет заполнение подуровней в следующем порядке: 5s-> 4d -> 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41 Nb, 42 MO и т.д.

    В шестом и седьмом периодах появляются элементы, то есть элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

    4f-Элементы называют лантаноидами.

    5f-Элементы называют актиноидами.

    Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Сs и 56 Ва — 6s-элементы;

    57 Lа... 6s 2 5d 1 — 5d-элемент; 58 Се — 71 Lu — 4f-элементы; 72 Hf — 80 Нg — 5d-элементы; 81 Тl— 86 Rn — 6р-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f подуровней, то есть nf 7 и nf 14 .

    В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7).

    1) s-Элементы; заполняется электронами в-подуровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;

    2) р-элементы; заполняется электронами р-подуровень внешнего уровня атома; к р элементам относятся элементы главных подгрупп III—VIII групп;

    3) d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относятся элементы побочных подгрупп I—VIII групп, то есть элементы вставных декад больших периодов, расположенные между s- и р-элементами. Их также называют переходными элементами;

    4) f-элементы, заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

    1. Что было бы, если бы принцип Паули не соблюдался?

    2. Что было бы, если бы правило Хунда не соблюдалось?

    3. Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов: Са, Fе, Zr, Sn, Nb, Hf, Ра.

    4. Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.

    5. Что такое «провал» электрона? Приведите примеры элементов, у которых это явление наблюдается, запишите их электронные формулы.

    6. Как определяется принадлежность химического элемента к тому или иному электронному семейству?

    7. Сравните электронную и графическую электронную формулы атома серы. Какую дополнительную информацию содержит последняя формула?