Меню

Классификация и функции хроматина: различают гетеро- и эухроматин. Ядро, его строение и функции

Гидроизоляция

Биохимические исследования в генетике - важный способ изучения основных её элементов - хромосом и генов. В данной статье мы рассмотрим, что такое хроматин, выясним его строение и функции в клетке.

Наследственность - основное свойство живой материи

К главным процессам, характеризующим организмы, живущие на Земле, относятся дыхание, питание, рост, выделение и размножение. Последняя функция является наиболее значимой для сохранения жизни на нашей планете. Как не вспомнить, что первой заповедью, данной Богом Адаму и Еве была следующая: «Плодитесь и размножайтесь». На уровне клетки генеративная функция выполняется нуклеиновыми кислотами (составляющее вещество хромосом). Эти структуры будут рассмотрены нами в дальнейшем.

Добавим также, что сохранение и передача наследственной информации потомкам осуществляется по единому механизму, который совершенно не зависит от уровня организации особи, то есть и для вируса, и для бактерий, и для человека он универсален.

Что является веществом наследственности

В данной работе мы изучаем хроматин, строение и функции которого напрямую зависят от организации молекул нуклеиновых кислот. Швейцарским ученым Мишером в 1869 году в ядрах клеток иммунной системы были обнаружены соединения, проявляющие свойства кислот, названные им сначала нуклеином, а затем нуклеиновыми кислотами. С точки зрения химии, это высокомолекулярные соединения - полимеры. Их мономерами являются нуклеотиды, имеющие следующее строение: пуриновое или пиримидиновое основание, пентоза и остаток Ученые установили, что в клетках могут присутствовать два вида и РНК. Они входят в комплекс с белками и образуют вещество хромосом. Так же как и белки, нуклеиновые кислоты имеют несколько уровней пространственной организации.

В 1953 году лауреатами Нобелевской премии Уотсоном и Криком было расшифровано строение ДНК. Она представляет собой молекулу, состоящую из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями по принципу комплементарности (напротив аденина располагается тиминовое основание, напротив цитозина - гуаниновое). Хроматин, строение и функции которого мы изучаем, содержит молекулы дезоксирибонуклеиновой и рибонуклеиновой кислоты различной конфигурации. На этом вопросе мы остановимся более подробно в разделе «Уровни организации хроматина».

Локализация вещества наследственности в клетке

ДНК присутствует в таких цитоструктурах, как ядро, а также в органеллах, способных к делению - митохондриях и хлоропластах. Это связано с тем, что данные органоиды выполняют важнейшие функции в клетке: а также синтез глюкозы и образование кислорода в клетках растений. На синтетической стадии жизненного цикла материнские органеллы удваиваются. Таким образом, дочерние клетки в результате митоза (деления соматических клеток) или мейоза (образования яйцеклеток и сперматозоидов) получают необходимый арсенал клеточных структур, обеспечивающих клетки питательными веществами и энергией.

Рибонуклеиновая кислота состоит из одной цепи и имеет меньшую молекулярную массу, чем ДНК. Она содержится как в ядре, так и в гиалоплазме, а также входит в состав многих клеточных органоидов: рибосом, митохондрий, эндоплазматической сети, пластид. Хроматин в этих органеллах связан с белками-гистонами и входит в состав плазмид - кольцевых замкнутых молекул ДНК.

Хроматин и его структура

Итак, мы установили, что нуклеиновые кислоты содержатся в веществе хромосом - структурных единицах наследственности. Их хроматин под электронным микроскопом имеет вид гранул или нитевидных образований. Он содержит, кроме ДНК, еще и молекулы РНК, а также белки, проявляющие основные свойства и названные гистонами. Все вышеперечисленные нуклеосом. Они содержатся в хромосомах ядра и называются фибриллами (нити-соленоиды). Подводя итог всему вышесказанному, определим, что такое хроматин. Это комплексное соединение и специальных белков - гистонов. На них, как на катушки, накручиваются двухцепочечные молекулы ДНК, образуя нуклеосомы.

Уровни организации хроматина

Вещество наследственности имеет различную структуру, которая зависит от многих факторов. Например, от того, какую стадию жизненного цикла переживает клетка: период деления (метоз или мейоз), пресинтетический или синтетический период интерфазы. Из формы соленоида, или фибриллы, как наиболее простой, происходит дальнейшая компактизация хроматина. Гетерохроматин - более плотное состояние, образуется в интронных участках хромосомы, на которых невозможна транскрипция. В период покоя клетки - интерфазы, когда отсутствует процесс деления, - гетерохроматин располагается в кариоплазме ядра по периферии, вблизи его мембраны. Уплотнение ядерного содержимого происходит в постсинтетическую стадию жизненного цикла клетки, то есть непосредственно перед делением.

От чего зависит конденсация вещества наследственности

Продолжая изучать вопрос "что такое хроматин", ученые установили, что его уплотнение зависит от белков-гистонов, входящих наряду с молекулами ДНК и РНК в состав нуклеосом. Они состоят из белков четырёх видов, называемых коровыми и линкерными. В момент транскрипции (считывание информации с генов с помощью РНК) вещество наследственности слабо конденсировано и носит название эухроматина.

В настоящее время особенности распределения молекул ДНК, связанных с гистоновыми белками, продолжают изучаться. Например, ученые выяснили, что хроматин различных локусов одной и той же хромосомы отличается уровнем конденсации. Например, в местах прикрепления к хромосоме нитей веретена деления, называемых центромерами, он более плотный, чем в теломерных участках - концевых локусах.

Гены-регуляторы и состав хроматина

В концепции регуляции генной активности, созданной французскими генетиками Жакобом и Моно, дается представление о существовании участков дезоксирибонуклеиновой кислоты, в которых нет информации о структурах белков. Они выполняют чисто бюрократические - управленческие функции. Называясь генами-регуляторами, эти части хромосом, как правило, в своей структуре лишены белков-гистонов. Хроматин, определение которого было проведено методом секвенирования, получил название открытого.

В ходе дальнейших исследований было установлено, что в этих локусах расположены последовательности нуклеотидов, препятствующие присоединению к молекулам ДНК белковых частиц. Такие участки содержат регуляторные гены: промоторы, эхансеры, активаторы. Компактизация хроматина в них высока, а длина этих участков в среднем составляет около 300 нм. Существует определения открытого хроматина в изолированных ядрах, при котором используют фермент ДНК-азу. Он очень быстро расщепляет локусы хромосом, лишенные белков-гистонов. Хроматин в этих участках был назван сверхчувствительным.

Роль вещества наследственности

Комплексы, включающие ДНК, РНК и белок, называемые хроматином, участвуют в онтогенезе клеток и изменяют свой состав в зависимости от типа ткани, а также от стадии развития организма в целом. Например, в эпителиальных клетках кожи такие гены, как эхансер и промотор, заблокированы белками-репрессорами, а эти же регуляторные гены в секреторных клетках эпителия кишечника активны и находятся в зоне открытого хроматина. Ученые-генетики установили, что на долю ДНК, не кодирующей белки, приходится более 95 % всего генома человека. Это значит, что управляющих генов намного больше, чем тех, которые ответственны за синтез пептидов. Внедрение таких методов, как ДНК-чипы и секвенирование, позволило выяснить, что такое хроматин, и, как следствие, провести картирование генома человека.

Исследования хроматина очень важны в таких отраслях науки, как генетика человека и медицинская генетика. Это связано с резко возросшим уровнем появления наследственных заболеваний - как генных, так и хромосомных. Раннее выявление этих синдромов повышает процент положительных прогнозов при их лечении.

Наименование параметра Значение
Тема статьи: Хроматин
Рубрика (тематическая категория) Биология

Ядерный сок

Ядерная оболочка

Задание № 1

Тема 5 Клеточное ядро

1.Прочитайте ниже изложенный учебный материал.

2.Проанализируйте таблицы из приложения

3.Ответьте на вопросы самоконтроля.

Строение ядра

Ядро- важнейшая составная часть клетки.

Функции:

1.Хранение и воспроизведение наследственной информации.

2.Регуляция всœех процессов обмена веществ в клетке.

Ядро эукариотической клетки может иметь различную форму: округлую, элипсовидную, продолговатую она зависит от вида растения и животного, а также от типа, возраста и функционального состояния клетки.

Как правило, в клетке имеется одно ядро. При этом известны многоядерные клетки, некоторые специализированные эукариотические клетки лишены ядра.

Ядро эукариотической клетки состоит:

Ядерная оболочка

Ядерный сок

Хроматин

Отделяет ядро от цитоплазмы, обеспечивает его целостность, и в то же время, связывает ядро с другими частями клетки.

Ядерная оболочка состоит из двух мембран: наружной и внутренней. Наружная мембрана образует выросты, с помощью которых она соединяется с каналами ЭПС. На ней прикреплены рибосомы; внутренняя мембрана, контактирующая с кариоплазмой, их лишена. В ядерной оболочке находится множество пор, через которые происходит обмен молекулами между ядром и цитоплазмой. Область между двумя мембранами принято называть перинуклеарным пространством- оно связывает ядро с ЭПС. Благодаря наличию пор, обеспечивающих избирательную проницательность, ядерная оболочка контролирует обмен веществ между ядром и цитоплазмой

Полужидкое вещество, ĸᴏᴛᴏᴩᴏᴇ находится под ядерной оболочкой, представляет внутреннюю среду ядра. В его состав входят вода, белки, в т.ч. большинство ферментов ядра, белки хроматина, аминокислоты, всœе виды РНК. Кариоплазма осуществляет взаимосвязь всœех ядерных структур

Совокупность хромосом. Это главный компонент ядра.

В состав хроматина входят: ДНК, БЕЛКИ, небольшое количество РНК, неорганические ионы.

Функция – передача генетической информации.

На окрашенных препаратах клетки в состоянии покоя представляет собой сеть тонких тяжей, мелких гранул или глыбок. основу хроматина составляют нуклеопротеины –длинные нитевидные молекулы ДНК, соединœенные со специфическими белками. В процессе делœения ядра нуклеопротеины спирализуются, укорачиваются, уплотняясь в компактные хромосомы , которые становятся заметными в световой микроскоп.

Хромосома состоит из двух нитей ДНК – хроматид . Хромосома самостоятельная ядерная структура, имеющая плечи и первичную перетяжку центромеру – область, к которой во время делœения клетки прикрепляются нити веретена делœения. Центромера делит хроматиду на два плеча. Хромосомы одинаковые по форме и размерам и несущие одинаковые гены называют гомологичными. Расположение центромеры определяет три базовых типа хромосом:

Равноплечие

Неравноплечие

Палочковидные

Правила хромосом.

1.Во всœех соматических клетках организма число хромосом одинаково.

Половые клетки, всœегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организма.

2.У всœех организмов, относящихся к одному виду, число хромосом в клетках одинаково.

Число хромосом не зависит от уровня организации и не всœегда указывает на родство. Совокупность количественных и качественных признаков хромосомного набора называют кариотипом.

Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название диплоидного и обозначается (2n) . Из каждой пары гомологичных хромосом в половые клетки попадает только одна, и в связи с этим хромосомный набор гамет называют гаплоидным и обозначается (n) .

Хроматин - понятие и виды. Классификация и особенности категории "Хроматин" 2017, 2018.

  • - ПОЛОВОЙ ХРОМАТИН

    Половые хромосомы (гоносомы, гетеросомы) различаются как по строению (длина, положение центромеры, количество гетерохроматина), так и по содержанию генов. Хромосома X - это субметацентрическая хромосома средних размеров, входит в группу С). Она есть в соматических клетках... .


  • - Компактизация наследственного материала. Химический состав и структура хроматина.

    ЭУКАРИОТЫ Гетерозис в растениеводстве По степени развития вегетативных органах, урожайности, устойчивость к болезням, вредителям, неблагоприятных условиях окружающей среды. У растений семенным размножением гетерозис не закрепляется. У картофеля, лука,... .


  • - Экспресс-метод исследования Х-полового хроматина в ядрах эпителия слизистой оболочки полости рта

    Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок). Таблица Проведение дактилоскопического анализа Для изготовления собственных отпечатков пальцев необходимо следующее оборудование:... .


  • - Метод определения полового хроматина

    Приготовьте предметное и покровное стекла: протрите их ваткой, смоченной в спирте. Возьмите шпатель, протрите один конец его спиртом. Проведите ребром шпателя по внутренней поверхности щеки, стремясь снять эпителий слизистой оболочки. Соскоб эпителия размажьте на...

  • Хроматин — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

    При наблюдении некоторых живых клеток, особенно растительных или же клеток после фиксации и окраски, внутри ядра выявляются зоны плотного вещества. В состав хроматина входит ДНК в комплексе с белком. В интерфазных клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0. 3 мкм) и длинных тяжей, образующих подобие внутриядерной цепи.

    Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Показано, что степень деконденсации хромосомного материала в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Падение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

    Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включение предшественников ДНК и РНК.

    В рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации;

    В неактивном - в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и перенося генетического материала в дочерние клетки.

    В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны. В составе хроматина обнаружено также РНК. В количественном отношении ДНК, белок и РНК находятся как 1: 1, 3: 0, 2. О значении РНК в составе хроматина еще нет достаточно однозначных данных. Возможно, что эта РНК представляет собой сопутствующую препарату функцию синтезирующейся РНК и поэтому частично связанной с ДНК или это особый вид РНК, характерный для структуры хроматина.

    Схема конденсации хроматина:

    Хроматин (от греч. chroma - краска) мелкие зернышки и глыбки материала, который обнаруживается в ядре клеток и окрашивается ос­новными красителями. Хроматин состоит из Комплекса ДНК и белка И соответствует хромосомам, которые в интерфазном ядре представлены длинными, тонкими перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализапии каждой из хромо­сом неодинакова по их длине. Различают два вида хроматина - Эухроматин и гетерохроматин.

    Эухроматин. Соответствует сегментам хромосом, которые Деспира-лизованы и открыты для транскрипции. Эти сегменты Не окрашива­ются И не видны в световой микроскоп.

    Гетерохроматин. Соответствует Конденсированным, Плотно скру­ченным сегментам хромосом (что делает их Недоступными для транс­крипции). Он Интенсивно окрашивается Основными красителями, и в световом микроскопе имеет вид гранул.

    Таким образом, По морфологическим признакам ядра (соотноше­нию содержания эу - и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При ее повышении это соотношение изменяется в пользу эухроматина, при снижении - нарастает содержание гетерохроматина. При полном подавлении функции ядра (например, в поврежденных и гибну­щих клетках, при ороговении эпителиальных клеток эпидермиса - кера-тиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основны­ми красителями интенсивно и равномерно. Такое явление называется Кариопикнозом (от греч. karyon - ядро и pyknosis - уплотнение).

    Распределение гетерохроматина (топография его частиц в яд­ре) и соотношение содержания эу - и гетерохроматина Характерны для клеток каждого типа, что позволяет осуществлять их идентификацию как визуально, так и с помощью автоматических анализаторов изобра­жения. Вместе с тем, имеются определенные общие закономерности распределения гетерохроматина В ядре: его скопления располагают­ся Под кариолеммой, прерываясь в области пор (что обусловлено его связью с ламиной) и вокруг ядрышка (Перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру.

    Тельце Барра - Скопление гетерохроматина, соответствующее од­ной Х-хромосоме у особей женского пола, которая в интерфазе плотно скручена и неактивна. В большинстве клеток оно лежит у кариолеммы, а в гранулоцитах крови имеет вид маленькой добавочной дольки ядра ("барабанной палочки"). Выявление тельца Барра (обычно в эпителиальных клетках слизистой оболочки полости рта) используется как ди­агностический тест для определения генетического пола (обязателен, в частности, для женщин, участвующих в Олимпийских Играх).

    Упаковка хроматина в ядре. В дсконденсированном состоянии длина одной молекулы (двойной спирали) ДНК, образующей каждую хромосому, равна в среднем, около 5 см, а общая длина молекул ДНК всех хромосом в ядре (диаметром около 10 мкм) составляет более 2 м (что сравнимо с укладкой нити длиной 20 км в теннисный мячик диа­метром около 10 см), а в S-период интерфазы - более 4 м. Конкретные механизмы, препятствующие спутыванию этих нитей во время транс­крипции и репликации, остаются нераскрытыми, однако очевидна необ­ходимость Компактной упаковки молекул ДНК, В клеточном ядре это осуществляется благодаря их связи со специальными основными (гистоновыми) белками. Компактная упаковка ДНК в ядре обеспечивает:

    (1) Упорядоченное расположение Очень длинных молекул ДНК в небольшом объеме ядра;

    (2) функциональный Контроль активности генов (вследствие вли­яния характера упаковки на активность отдельных участков генома.

    Уровни упаковки хроматина . Начальный уровень упа­ковки хроматина, обеспечивающий образование Нуклеосомной нити Ди­аметром 11 нм, обусловлен намоткой двойной нити ДНК (диаметром 2 нм) на блоки дисковидной формы из 8 гистоновых молекул (нуклеосомы). Нуклеосомы разделены короткими участками свободной ДНК. Второй уровень упаковки также обусловлен гистонами и приводит к скручиванию нуклеосомной нити с формированием Хроматиновой фибриллы Диаметром 30 нм. В интерфазе хромосомы образованы хроматиновыми фибриллами, причем каждая хроматида состоит из одной фибриллы. При дальнейшей упаковке хроматиновые фибриллы образу­ют Петли (петельные домены) Диаметром 300 нм, каждый из которых соответствует одному или нескольким генам, а те, в свою очередь, в результате еще более компактной укладки, формируют участки конденси­рованных хромосом, которые выявляются лишь при делении клеток.

    В хроматине ДНК связана помимо гастонов также и с Негистоновыми белками, Которые Регулируют активность генов. Вместе с тем, и гистоны, ограничивая доступность ДНК для других ДНК-связьвзающих белков, могут участвовать в регулядии активности генов.

    Функция хранения генетической информации В ядре в неизме­ненном виде имеет исключительно важное значение для нормальной жизнедеятельности клетки и всего организма. Подсчитано, что при ре­пликации ДНК и в результате ее повреждений внешними факторами в каждой клетке человека ежегодно происходят изменения 6 нуклеотидов. Возникшие повреждения молекул ДНК могут исправляться в ре­зультате процесса Репарации Или путем Замещения После Распознава­ния и маркировки соответствующего участка.

    В случае невозможности репарации ДНК при слишком значитель­ных повреждениях включается механизм запрограммированной гибели клетки . В этой ситуации "поведение" клетки можно оценить как своего рода "альтруистическое самоубийство": ценой своей гибели она спасает организм от возможных негативных последствий реплика­ции и амплификации поврежденного генетического материала.

    Способность к репарации ДНК у Взрослого человека снижается примерно на 1% с каждым годом. Это снижение может отчасти объяс­нить, почему старение является фактором риска развития злокачест­венных заболеваний. Нарушения процессов репарации ДНК Характерно для ряда наследственных болезней, при которых резко Повышены Как Чувствительность к повреждающим факторам, Так и Частота разви­тия злокачественных новообразований.

    Функция Реализации генетической информации В интерфазном ядре осуществляется непрерывно благодаря процессам Транскрипции. Геном млекопитающих содержит около ЗхЮ9 нуклеотидов, однако не более 1% его объема кодирует важные белки и принимает участие в ре­гуляции их синтеза. Функции основной некодирующей части генома не­известны.

    При транскрипции ДНК образуется очень крупная молекула РНК (первичный транскрипт), которая связывается с ядерными белками с образованием Рибонуклеопротеинов (РНП). В первичном РНК-транс­крипте (как и в матричной ДНК) имеются дискретные значащие после­довательности нуклеотидов (экзоны), Разделенные длинными некодирующими вставками (нитронами). Процессинг РНК-транскрипта включает отщепление нитронов и стыковку экзонов - сплайсинг (от англ, splicing - сращивание). При этом очень крупная молекула РНК превращается в достаточно мелкие молекулы иРНК, отделяющиеся от связанных с ни­ми белков при переносе в цитоплазму.

    Генетический материал эукариотических организмов имеет очень сложную организацию. Молекулы ДНК, находящиеся в клеточном ядре, входят в состав особого многокомпонентного вещества – хроматина.

    Определение понятия

    Хроматином называется содержащий наследственную информацию материал клеточного ядра, представляющий собой сложный функциональный комплекс ДНК со структурными белками и другими элементами, обеспечивающими упаковку, хранение и реализацию кариотического генома. В упрощенной трактовке это вещество, из которого состоят хромосомы. Термин происходит от греческого "хрома" – цвет, краска.

    Понятие было введено Флемингом еще в 1880 году, но до сих пор идут споры о том, что такое хроматин, с точки зрения биохимического состава. Неопределенность касается небольшой части компонентов, не участвующих в структурировании генетических молекул (некоторые ферменты и рибонуклеиновые кислоты).

    На электронной фотографии интерфазного ядра хроматин визуализируется как многочисленные участки темной материи, которые могут быть мелкими и разрозненными или объединяться в крупные плотные скопления.

    Конденсация хроматина во время клеточного деления приводит к образованию хромосом, которые видны даже в обычном световом микроскопе.

    Структурные и функциональные компоненты хроматина

    С целью определить, что такое хроматин на биохимическом уровне, ученые экстрагировали это вещество из клеток, переводили в раствор и в таком виде изучали компонентный состав и структуру. При этом использовались как химические, так и физические методы, включая технологии электронной микроскопии. Выяснилось, что химический состав хроматина на 40% представлен длинными молекулами ДНК и почти на 60% – различными белками. Последние подразделяются на две группы: гистоны и негистоновые.

    Гистонами называют большое семейство основных ядерных белков, которые прочно связываются с ДНК, формируя структурный скелет хроматина. Их количество примерно равно процентному содержанию генетических молекул.

    Остальная часть (до 20%) протеиновой фракции приходится на ДНК-связывающие и пространственно-модифицирующие белки, а также ферменты, принимающие участие в процессах считывания и копирования генетической информации.

    Помимо основных элементов, в составе хроматина в небольшом количестве обнаруживаются рибонуклеиновые кислоты (РНК), гликопротеиды, углеводы и липиды, однако вопрос об их ассоциации с ДНК-упаковочным комплексом до сих пор открыт.

    Гистоны и нуклеосомы

    Молекулярная масса гистонов варьирует в пределах от 11 до 21 кДа. Большое количество остатков основных аминокислот лизина и аргинина придают этим белкам положительный заряд, способствуя формированию ионных связей с противоположно заряженными фосфатными группами двойной спирали ДНК.

    Выделяют 5 разновидностей гистонов: H2A, H2B, H3, H4 и H1. Первые четыре типа участвуют в формировании основной структурной единицы хроматина – нуклеосомы, которая состоит из кора (белковой сердцевины) и обмотанной вокруг него ДНК.

    Нуклеосомный кор представлен октамерным комплексом из восьми молекул гистонов, в который входят тетрамер H3-H4 и димер Н2A-H2B. Участок ДНК протяженностью около 146 нуклеотидных пар накручивается на поверхность белковой частицы, образуя 1,75 витка, и переходит в линкерную последовательность (примерно 60 н. п.), соединяющую нуклеосомы друг с другом. Молекула H1 связывается с линкерной ДНК, защищая ее от действия нуклеаз.


    Гистоны могут подвергаться различным модификациям, таким как ацетилирование, метилирование, фосфорилирование, ADP-рибозилирование и взаимодействие с убивиктиновым белком. Эти процессы влияют на пространственную конфигурацию и плотность упаковки ДНК.

    Негистоновые белки

    Существует несколько сотен разновидностей негистоновых белков с различными свойствами и функциями. Их молекулярная масса варьирует от 5 до 200 кДа. Особую группу составляют сайт-специфические белки, каждый из которых комплементарен определенному участку ДНК. В эту группу входят 2 семейства:

    • "цинковые пальцы" – узнают фрагменты длиной в 5 нуклеотидных пар;
    • гомодимеры – характеризуются структурой "спираль-поворот-спираль" во фрагменте, связанном с ДНК.

    Лучше всего изучены так называемые белки высокой подвижности (HGM-белки), постоянно ассоциированые с хроматином. Такое наименование семейство получило из-за высокой скорости перемещения белковых молекул в электрофорезном геле. Эта группа занимает большую часть негистоновой фракции и включает в себя четыре основных типа HGM-белков: HGM-1, HGM-14, HGM-17 и HMO-2. Они выполняют структурную и регуляторную функции.

    К негистоновым белкам относят также ферменты, обеспечивающие транскрипцию (процесс синтеза матричной РНК), репликацию (удвоение ДНК) и репарацию (устранение повреждений в генетической молекуле).

    Уровни компактизации ДНК

    Особенность структуры хроматина такая, что позволяет нитям ДНК с суммарной длиной более метра поместиться в ядро диаметром около 10 мкм. Такое возможно благодаря многоступенчатой системе упаковки генетических молекул. Общая схема компактизации включает пять уровней:

    1. нуклеосомная нить диаметром 10–11 нм;
    2. фибрилла 25–30 нм;
    3. петлевые домены (300 нм);
    4. волокно толщиной 700 нм;
    5. хромосомы (1200 нм).

    Такая форма организации обеспечивает уменьшение длины исходной молекулы ДНК в 10 тысяч раз.


    Нить диаметром 11 нм образована рядом нуклеосом, связанных линкерными участками ДНК. На электронной микрофотографии такая структура напоминает нанизанные на леску бусы. Нуклеосомная нить сворачивается в спираль по типу соленоида, образуя фибриллу толщиной 30 нм. В ее формировании участвует гистон H1.


    Соленоидная фибрилла складывается в петли (иначе – домены), которые закрепляются на поддерживающем внутриядерном матриксе. Каждый домен содержит от 30 до 100 тысяч пар нуклеотидов. Такой уровень компактизации характерен для интерфазного хроматина.

    Структура толщиной 700 нм образуется при спирализации доменной фибриллы и называется хроматидой. В свою очередь, две хроматиды формируют пятый уровень организации ДНК – хромосому диаметром 1400 нм, которая становится видна на стадии митоза или мейоза.

    Таким образом, хроматин и хромосома – это формы упаковки генетического материала, зависящие от жизненного цикла клетки.

    Хромосомы

    Хромосома состоит из двух идентичных друг другу сестринских хроматид, каждая из которых образована одной суперспирализованной молекулой ДНК. Половинки соединяются особым фибриллярным тельцем, называемым центромерой. Одновременно эта структура является перетяжкой, разделяющей каждую хроматиду на плечи.


    В отличие хроматина, представляющего собой структурный материал, хромосома – это дискретная функциональная единица, характеризующаяся не только структурой и составом, но и уникальным генетическим набором, а также определенной ролью в реализации механизмов наследственности и изменчивости на клеточном уровне.

    Эухроматин и гетерохроматин

    Хроматин в ядре существует в двух формах: менее спирализованной (эухроматин) и более компактной (гетерохроматин). Первая форма соответствует транскрипционно-активным участкам ДНК и поэтому структурирована не так плотно. Гетерохроматин подразделяется на факультативный (может переходить из активной формы в плотную неактивную в зависимости от стадии жизненного цикла клетки и необходимости реализовать те или иные гены) и конститутивный (постоянно уплотнен). Во время митотического или мейотического деления весь хроматин неактивен.

    Конститутивный гетерохроматин обнаружен возле центромер и в концевых участках хромосомы. Результаты электронной микроскопии показывают, что такой хроматин сохраняет высокую степень конденсации не только на стадии деления клетки, но и во время интерфазы.

    Биологическая роль хроматина

    Основная функция хроматина заключается в плотной упаковке большого количества генетического материала. Однако просто уместить ДНК в ядре для жизнедеятельности клетки недостаточно. Необходимо, чтобы эти молекулы должным образом "работали", то есть, могли передавать заключенную в них информацию по системе ДНК-РНК-белок. Кроме этого, клетке нужно распределять генетический материал во время деления.

    Устройство хроматина полностью отвечает этим задачам. Белковая часть содержит все необходимые ферменты, а особенности структуры позволяют им взаимодействовать с определенными участками ДНК. Поэтому, второй важной функцией хроматина является обеспечение всех процессов, связанных с реализацией ядерного генома.