Меню

Митохондрии – строение и функции. Митохондрии

Унитаз

Митохондрии (МТ) – одно из самых интересных мне направлений исследований. Объединение митохондрий с другой клеткой в ходе эндосимбиоза около 1,6 млрд лет назад стало основной всех многоклеточных эукариотов со сложной структурой. Предположительно митохондрии произошли от клеток, напоминающих α-протеобактерии.

Лучшее обзорное исследование последнего времени по митохондриях – работа Вернера Кулбрандта «Структура и функция митохондриальных белковых комплексов мембраны ». Если вы знаете английский язык и интересуетесь устройством этих органелл, то настоятельно рекомендую к прочтению. Эта статья так хороша, что может быть смело главой хорошего учебника по молекулярной биологии. Сначала я хотел перевести всю статью, но это бы заняло непростительно много времени и оторвало бы от других дел. Поэтому ограничусь тезисами и картинками. Периодически разбавляя все своими мыслями.

Митохондрия кодирует сама только 13 белков, не смотря на наличие отдельной от клетки ДНК (мтДНК) и всего «производственного» цикла по транскрипции белков. Изолированная митохондрия какое-то время может сохранять композицию и функционировать.

Рисунок 1. Компоненты мембраны митохондриона. Внешняя мембрана отделяет митохондрию от цитоплазмы. Она окружает внутреннюю мембрану, которая отделяет межмембранное пространство от богатого белками центрального матрикса. Внутреннюю мембрану разделяют на внутреннюю пограничную мембрану и кристы. Две эти части непрерывны в местах крепления крист (cristae junction ). Кристы простираются более или менее глубоко в матрикс и являются основным место митохондриального преобразования энергии. Небольшой протоновый градиент в межмембранном пространстве (pH 7,2-7,4) и матрикс (pH 7,9-8,0) приводят к образованию АТФ АТФ-синтазой в мембранах крист.

Внешняя мембрана пористая и позволяет веществам из цитоплазмы проходить через нее. Внутренняя мембрана плотная, для ее пересечения нужны транспортные белки [Гилберт Линг обоснованно не согласен], непрерывность барьера позволяет иметь внутренней мембране электрохимический потенциал в -180 mV. У матрикса довольно большой pH (7,9-8). Еще раз углублюсь в Линга. Щелочной (выше 7) pH способствует более развернутой конформации белков . Высокий pH нарушает водородные и солевые связи, делая поляризованные CO и NH доступными молекулам воды, там самым усиливая дипольный момент всей внутриклеточной воды и связывая ее. В этом ключе наличие мембраны нужно не для «удержания» протоплазмы внутри клетки (это делают сами белки при высоком pH), а для наличия потенциала.

мтДНК находится в нуклеотидах, которых примерно 1000 на клетку. Белковая плотность матрикса довольна высокая (до 500 мг/мл), что близко к кристаллизованным белкам.

Внутренняя мембрана образует инвагинации, называемые кристами, которые глубоко проникают в матрикс. Кристы определяют третий «отсек» митохондрий – просвет крист (cristae lumen). Мембраны кристы содержат большинство, если не все, полностью «собранные» комплексы цепи переноса электронов и АТФ-синтазы. Просвет кристы содержит большое количество маленького растворимого белкового переносчика электронов (цитохром с). Митохондриальные кристы, таким образом, основное место биологической конверсии энергии во всех не фотосинтетических эукариотах.

С кристами тоже много всего интересного. Оптические свойства кристы влияют на распространение и генерацию света в тканях. Я даже встречал идеи о том, что поверхность крист подобна (предположение) поверхностям топологических изоляторов (подразумевалась суперпроводимость без диссипации заряда).

Рисунок 2. Мембранные белковые комплексы дыхательной цепи. Комплекс I (NADH / убихинон оксидоредуктаза, синий), Комплекс II (сукцинат дегидрогеназа, розовы), Комплекс III (цитохром С редуктаза, оранжевый), Комплекс IV (цитохром С оксидаза, зеленый) и митохондриальная АТФ синтаза (известная как комплекс V , бежевая) работают вместе во время окислительного фосфорилирования, чтобы клетки могли использовать энергию. Комплексы I , III , IV выкачивают протоны вдоль мембраны кристы, создавая протоновый градиент, стимулирующий синтез АТФ.

Теперь немного внимания на комплекс II. Вы помните, что жир (кето) делает упор в метаболизме на FADH2 и комплекс II. Они восстанавливают пару CoQ, в какой-то момент окисленного CoQ не хватает для транспортировки электронов на комплекс III и образует обратный поток электронов на комплекс I с образованием супероксида. При долгом HFLC-питании комплекс I будет обратимо разрушен, при этом это нормальная физиологическая оптимизация.

Еще прошу вас заметить, что комплекс II не выкачивает протоны. Что у нас рассеивает протоновый градиент, нарушает фосфорилирование и стимулирует сжигание жиров на тепло? Правильно, стресс холода. Термогенез связан с метаболизмом через комплекс, который не выкачивает протоны, тем самым не давая дополнительных протонов для АТФ-синтазы. Можно только удивляться как замечательно у нас продуман организм.

Крепления крист и MICOS

Места крепления крист (cristae junctions) – маленькие круглы отверстия примерно 25 нм диаметром. В митохондриях всех организмов есть система MICOS (mitochondria contact site and cristae to outer membrane), сборка из пяти мембранных и одного растворимого белков, прикрепляющих кристы к наружной мембране.

В клетках с повышенной потребностью в энергии, такие как скелетные и сердечные мышцы, кристы плотно заполняют большую часть объема митохондрии. В тканях с меньшими потребностями в энергии, таких как печень и почки, кристы находятся не так плотно по отношению друг к другу. Остается больше места в матрице для биосинтетических ферментов.

Рисунок 3. Томографический объем митохондрии сердца мыши. А) Трехмерный объем митохондрии сердца мыши, снятый cryo-ET. Наружная мембрана (серая) окутывает внутреннюю мембрану (светло-синяя). Внутренняя мембрана плотно наполнена кристами б) Томографический срез объема. Плотно заполненный матрикс, содержащий большую часть митохондриальных белков, выглядит темным на электронном микроскопе. В то время как межмембранное пространство и просветы крист выглядят светлыми из-за низкой концентрации белков.

Димеры АТФ синтазы

Митохондриальная F1-F0 АТФ синтаза является самым заметным белковым комплексом кристы. АТФ синтаза – это древняя наномашина, которая использует электрохимический протновых градиент вокруг внутренней мембраны для создания АФТ посредством вращательного катализа . Протоны, двигающиеся через F0 комплекс мембраны, вращают ротор из 8 (у млекопитающих) или 10 (у дрожжей) с-узлов. Центральный стебель передает крутящий момент c-ротора каталитической головке F1, где АТФ образуется из АДФ и фосфата через последовательность конформационных изменения. Периферийный стебель предотвращает непродуктивное вращение Головы F1 против комплекса F0.

Многие годы считалось, что АТФ синтаза случайным образом располагается на внутренней мембране. Но оказалось, что АТФ синтаза располагается двойными рядами . Причем линейные ряды АТФ синтазы – фундаментальный атрибут всех живых митохондрий.

Рисунок 4. Двойные ряды АТФ синтазы у семи разных видов.

Ряды АТФ синтазы располагаются в основном вдоль хребтов крист. Димеры изгибают липидный бислой и как следствие само-организуются в ряды. Когда у митохондрий дрожжей выбивали узлы e и g АФТ синтазы, то штамм рос на 60% медленней диких собратьев, и потенциал мембран их митохондрий был снижен вдвое. У АФТ синтазы прокариотов недостает нескольких узлов, связанных с димерами, ряды димеров не были найдены у бактерий и архей. Кристы и ряды димеров АФТ синтазы, таким образом, являются адаптацией к большим энергетическим потребностям организма.

Рисунок 5. Структура димера АТФ синтазы митохондрии polymella sp. Вид сбоку на V-образный димер АТФ синтазы.

Комплексы и суперкомплексы дыхательной цепи

Протоновый градиент вокруг внутренней мембраны создается тремя крупными мембранными комплексами, известными как комплекс I, комплекс III и комплекс IV (см. рисунок 2). Комплекс I кормится электронами из NADH, высвобождаемая при передаче электрона энергия выкачивает четыре протона. Комплекс III получает электрон от восстановленного хинола и передает его носителю электронов (цитохрому с), выкачивая в процессе один протон. Комплекс IV получает электрон из цитохрома с и передает его молекулярному кислороду, выкачивая 4 протона за каждую молекулу кислорода, превращенную в воду. Комплекс II не выкачивает протоны, напрямую передавая электроны хинолу. Как перенос электронов из NADH в хинол связан с транслокацией протонов пока не ясно. Комплекс I – крупнее III и IV вместе взятых.

Рисунок 6. Комплекс I митохондрии коровьего сердца. Матриксная часть содержит ряд из восьми железно-серных (Fe-S) кластеров, которые направляют электроны из NADH в хинол на пересечении матрикса и мембраны. Мембранная часть состоит из 78 лопастей, включая выкачивающие протоны молекулы.

Комплексы I, III и IV соединяются в суперкомплексы или респирасомы. У пекарских дрожжей (saccharomyces cerevisiae ) нет комплекса I, их суперкомплексы состоят из III и IV. Роль суперкомплексов пока еще не ясна. Предполагают, что это делает транспорт электронов более эффективным, но прямых доказательств этому пока нет.

Рисунок 7. Суперкомплекс митохондрии коровьего сердца. Обратите внимание на дистанцию между комплексами I и III, который надо проделать хинолу. Стрелки – движения электрона в суперкомплексе.

Основным белком просвета кристы является цитохром с, который переносит электрон из комплекса III в комплекс IV. Если цитохром с высвобождается в цитоплазму клетки, то вызывает апоптоз .

Рисунок 8. Ряды димеров АТФ синтазы задают форму кристам. У хребта кристы АФТ синтаза (желтый) образует слив для протонов (красный), протоновые насосы электронной цепи (зеленый) находятся по обоим сторона рядов димеров. Направляя протоны от источника к АТФ синтазе, кристы работают как протоновые направляющие, позволяющие эффективное производство АТФ. Красные стрелки показывают направление потока протонов.

Реорганизация мембраны во время старения

Старение – фундаментальный и плохо понимаемый процесс всех эукариотов. Исследовали старение митохондрий на грибах Podospora anserina , которые живут всего 18 дней. В нормальной митохондрии кристы проникают глубоко в матрикс. Для этого нужны ряды димеров АТФ синтазы и MICOS комплекс у мест крепления крист. С возрастом кристы начинают все ближе подходить к поверхности мембраны, димеры АФТ синтазы превщаются в мономеры, и все заканчивается высвобождением цитохрома с и клеточной смертью.

Транспорт электронов создает супероксид в комплексах I и III. Это побочный продукт метаболизма. Одновременно необходимый и смертельно опасный. Во время старения деление (fission) начинает превалировать над сращением (fussion). Это не дает поврежденным митохондриям «спастись» путем сращения и ускоряет неизбежное.

Рисунок 9. Изменения морфологии внутренней мембраны и димеров АТФ синтазы во время старения митохондрии.

Как видите, полей для будущих исследований очень много. Я предполагаю стык физики и биологии, где физики будут пытаются объяснить почему такая структура более энергетически эффективна. Тем более публикации по квантовой биологии

Митохондрии

В клетках животных тканей митохондрии были обнаружены в 1882 г., а у растений - только в 1904 г. (в пыльниках кувшинки). Биологические функции удалось установить после выделения и очистки фракции методом фракционного центрифугирования. В их составе находится 70% белка и около 30% липидов, небольшое количество РНК и ДНК, витамины А, B 6 , В 12 , К, Е, фолиевая и пантотеновая кислоты, рибофлавин, различные ферменты. Митохондрии имеют двойную мембрану, Наружная изолирует органеллу от цитоплазмы, а внутренняя образует выросты кристы. Все пространство между мембранами заполнено матриксом (рис. 13).

Основная функция митохондрий - участие в клеточном дыхании. Роль митохондрий в дыхании была установлена в 1950-1951 годах. На наружных мембранах концентрируется сложная ферментная система цикла Кребса. При окислении субстратов дыхания освобождается энергия, которая тотчас же в процессе окислительного фосфорилирования, происходящего в кристах, аккумулируется в образующихся молекулах АДФ и главным образом АТФ. Энергия, запасенная в макроэргических соединениях, используется в дальнейшем для удовлетворения всех потребностей клетки.

Образование митохондрий в клетке происходит непрерывно из микротелец, чаще их возникновение связывают с дифференцировкой мембранных структур клетки. Они в клетке могут восстанавливаться путем их деления и почкования. Митохондрии не долговечны, продолжительность их жизни 5-10 дней.

Митохондрии – «силовые» станции клетки. В них концентрируется энергия, которая запасается в «аккумуляторах» энергии - молекулах АТФ, а не рассеивается в клетке. Нарушение структуры митохондрии ведет к нарушению процесса дыхания и в итоге к патологии организма.

Аппарат Гольджи. Аппарат Гольджи (синоним - диктиосомы) представляет собой стопки из 3-12 уплощенных, замкнутых, окруженных двойной мембраной дисков, называемых цистернами, от краев которых отшнуровываются многочисленные пузырьки (300-500). Ширина цистерн 6-90 А, толщина мембран - 60-70 А.

Аппарат Гольджи является центром синтеза, накопления и выделения полисахаридов, в частности целлюлозы, участвует в распределении и внутриклеточном транспорте белков, а также в образовании вакуолей и лизосом. В растительной клетке удалось проследить участие аппарата Гольджи в возникновении срединной пластинки и росте клеточной пекто-целлюлозной оболочки.

Аппарат Гольджи более всего развит в период активной жизни клетки. При ее старении он постепенно атрофируется, а затем исчезает.

Лизосомы. Лизосомы - довольно мелкие (около 0.5 мк в диаметре) округлые тельца. Они покрыты белково-липоидной мембраной. Содержимое лизосом многочисленные гидролитические ферменты, которые осуществляют функцию внутриклеточного переваривания (лизирования) макромолекул белка, нуклеиновых кислот, полисахаридов. Их основная функция переваривание отдельных участков протопласта клетки (автофагия - самопожирание). Этот процесс протекает за счет фагоцитоза или пиноцитоза. Биологическая роль этого процесса двоякая. Во-первых, защитная, поскольку при временном недостатке запасных продуктов клетка поддерживает жизнь за счет конституционных белков и др. веществ, а во-вторых происходит освобождение от избыточных или изношенных органелл (пластид, митохондрий и др.) Оболочка лизосомы препятствует выходу ферментов в цитоплазму, в противном случае она бы вся переваривалась этими ферментами.

В умершей клетке лизосомы разрушаются, ферменты оказываются в клетке и все ее содержимое переваривается. Остается только пекто-целлюлозная оболочка.

Лизосомы являются продуктами деятельности аппарата Гольджи, оторвавшимися от него пузырьками, в которых этот органоид аккумулировал переваривающие ферменты.

Сферосомы - округлые белково-липоидные тельца 0.3-0.4 мкм. По всей вероятности являются производными аппарата Гольджи или эндоплазматического ретикулума. По своей форме и величине напоминают лизосомы. Поскольку сферосомы содержат кислую фосфатазу, то они, вероятно, имеют отношение к лизосомам. Некоторые авторы считают, что сферосомы и лизосомы эквивалентны друг другу, но, скорее всего только по происхождению и форме. Есть предположение об их участии в синтезе жиров (А.Фрей-Висслинг).

Рибосомы - очень мелкие органоиды, диаметр их около 250А, По форме они почти шаровидные. Часть их прикреплена к наружным мембранам эндоплазматического ретикулума, часть их находится в свободном состоянии в цитоплазме. В клетке может содержаться до 5 млн рибосом. Рибосомы есть в хлоропластах и митохондриях, где они синтезируют часть белков, из которых построены эти органоиды, и ферменты, функционирующие в них.

Основная функция - синтез специфических белков согласно информации, поступающей из ядра. Их состав: белок и рибосомная рибонуклеиновая кислота (РНК) в равных соотношениях. Их структура малая и большая субъединицы, сформированные из рибонуклеотида.

Микротрубочки. Микротрубочки - своеобразные производные эндоплазматического ретикулума. Обнаружены во многих клетках. Само их название говорит об их форме - одна или две, расположенные параллельно, трубочки с полостью внутри. Внешний диаметр в пределах 250А. Стенки микротрубочек построены из белковых молекул. Из микротрубочек во время деления клетки образуются нити веретена.

Ядро

Ядро было обнаружено в растительной клетке Р. Броуном в 1831 году. Оно располагается в центре клетки или около клеточной оболочки, но со всех сторон окружено цитоплазмой. В большинстве случаев в клетке находится одно ядро, по несколько ядер находится в клетках некоторых водорослей, а также грибов. У зеленых водорослей неклеточной структуры насчитывается сотни ядер. Многоядерные клетки нечленистых млечников. Отсутствуют ядра в клетках бактерий и сине-зеленых водорослей.

Форма ядра чаще всего близка к форме шара или эллипса. Зависит от формы, возраста и функции клетки. В меристематической клетке ядро крупное, округлой формы и занимает 3/4 объема клетки. В паренхимных клетках эпидермы, имеющих крупную центральную вакуоль, ядро имеет чечевицеобразную форму и отодвинуто вместе с цитоплазмой к периферии клетки. Это признак специализированной, но уже стареющей клетки. Клетка, лишенная ядра, способна жить лишь короткое время. Безъядерные клетки ситовидных трубок живые клетки, но живут они недолго. Во всех других случаях безъядерные клетки являются мертвыми.

Ядро имеет двойную оболочку, через поры в которой содержимое
ядра (нуклеоплазма) может сообщаться с содержимым цитоплазмы. Мембраны оболочки ядра снабжены рибосомами и сообщаются с мембранами эндоплазматического ретикулума клетки. В нуклеоплазме располагается одно или два ядрышка и хромозомы. Нуклеоплазма представляет собой коллоидную систему золя, напоминающую по консистенции загустевшую желатину. В ядре, по данным отечественных биохимиков (Збарский И.Б. и др.), содержится четыре фракции белков: простых белков - глобулинов 20%, дезоксирибонуклеопротеидов - 70%, кислых белков - 6% и остаточных белков 4%. Они локализуются в следующих ядерных структурах: ДНК-протеиды (щелочные белки) - в хромозомах, РНК-протеиды (кислые белки) - в ядрышках, частично в хромозомах (в период синтеза информационной РНК) и в ядерной мембране. Глобулины составляют основу нуклеоплазмы. Остаточные белки (природа не уточнена) образуют ядерную мембрану.



Основная масса белков ядра - сложные щелочные белки дезоксирибонуклеопротеиды, в основе которых находится ДНК.

Молекула ДНК. Молекула ДНК – полинуклеотид и состоит из нуклеотидов. В состав нуклеотида входит три компонента: молекула сахара (дезоксирибоза), молекула азотистого основания и молекулы фосфорной кислоты. Дезоксирибоза соединена с азотистым основанием гликозидной, а с фосфорной кислотой - эфирной связью. В ДНК имеется в различных комбинациях всего 4 разновидности нуклеотидов, отличающихся друг от друга азотистыми основаниям. Два из них (аденин и гуанин) относятся к пуриновым азотистым соединениям, а цитозин и тимин - к пиримидиновым. Молекулы ДНК располагаются не в одной плоскости, а состоят из двух спирализованных нитей, т.е. две параллельно расположенные цепочки, закрученные одна вокруг другой, образуют одну молекулу ДНК. Они скреплены между собой с помощью водородной связи между азотистыми основаниями, причем пуриновые основания одной цепочки присоединяют пиримидиновые основания другой (рис.14). Структура и химизм молекулы ДНК была раскрыта английским (Крик) и американским (Уотсон) учеными и обнародована в 1953 г. Этот момент принято считать началом развития молекулярной генетики. Молекулярный вес ДНК – 4-8 млн. Количество нуклеотидов (различных вариантов) до 100 тысяч. Молекула ДНК очень стабильна, ее стабильность обеспечивается тем, что на всем протяжении она имеет одинаковую толщину - 20А (8А - ширина пиримидинового основания +12А - ширина пуринового основания). Если ввести в организм радиоактивный фосфор, то метка будет обнаруживаться во всех фосфоросодержащих соединениях, кроме ДНК (Леви, Сикевиц).

Молекулы ДНК являются носителями наследственности, т.к. в их структуре закодирована информация о синтезе специфических белков, определяющих свойства организма. Изменения могут возникнуть под действием мутагенных факторов (радиоактивное излучение, сильнодействующие, химические агенты -алкалоиды, спирты и т.д.).

Молекула РНК. Молекулы рибонуклеиновой кислоты (РНК) значительно меньше молекул ДНК. Это одиночные цепочки из нуклеотидов. Существует три вида РНК: рибосомная, самая длинная, образующая многочисленные петли, информационная (матричная) и траспортная, самая короткая. Рибосомная РНК локализуется в рибосомах эндоплазматической сети и составляет 85% всей РНК клетки.

Информационная РНК по своей структуре напоминает листочек клевера. Ее количество - 5% от суммы всей РНК в клетке. Она синтезируется в ядрышках. Ее сборка происходит в хромозомах в период интерфазы. Ее основная функция - перенос информации от ДНК к рибосомам, где происходит синтез белка.

Транспортная РНК, как установлено сейчас, это целое семейство соединений, родственных по структуре и биологической функции. Каждая живая клетка по приблизительной оценке содержит 40-50 индивидуальных транспортных РНК и их общее число в природе, если учесть видовые различия, огромно. (Акад.В.Энгельгардт). Транспортными они называются потому, что их молекулы заняты транспортным обслуживанием внутриклеточного процесса синтеза белка. Соединяясь со свободными аминокислотами, они доставляют их к рибосомам в строящуюся белковую цепь. Это самые маленькие молекулы РНК, состоят в среднем из 80 нуклеотидов. Локализуются в матриксе цитоплазмы и составляют около 10% клеточной РНК

В составе РНК содержится четыре азотистых основания, но в отличие от ДНК в молекуле РНК вместо тимина находится урацил.

Структура хромозом. Хромозомы впервые были обнаружены в конце 19 века классиками цитологии Флемингом и Страсбургером (1882, 1884), а русский исследователь клетки И.Д. Чистяков их обнаружил в 1874 году.

Основной структурный элемент хромозом - ядро. Они имеют различную форму. Это либо прямые, либо изогнутые палочки, овальные тельца, шарики, размеры которых варьируют.

В зависимости от места расположения центромеры различают прямые, равноплечие и неравноплечие хромозомы. Внутренняя структура хромозом представлена на рис. 15, 16. Следует отметить, что дезоксирибонуклеопротеид является мономером хромозомы.

В хромозоме дезоксирибонуклеопротеидов 90-92%, из них 45% -ДНК и 55% - белка (гистона). В небольшом количестве в хромозоме представлена и РНК (информационная).

У хромозомы четко выражена и поперечная структура - наличие утолщенных участков - дисков, которые еще в 1909г. были названы генами. Этот термин был предложен датским ученым Иогансеном. В 1911 г. американский ученый Морган доказал, что гены являются основными наследственными единицами и распределяются они в хромозомах в линейном порядке и, поэтому хромозома имеет качественно различные участки. В 1934 г. американский ученый Пайнтер доказал прерывистость морфологического строения хромозом и наличие в хромозомах дисков, а диски - это места скопления ДНК. Это послужило началом создания хромосомных карт, на которых указывалось место (локус) расположения гена, определяющего тот или иной признак организма. Ген - это участок двойной спирали ДНК, на котором содержится информация о структуре одного белка. Это участок молекулы ДНК, определяющий синтез одной молекулы белка. ДНК непосредственного участия в синтезе белка не принимает. В ней только содержится и хранится информация о структуре белка.

Структура ДНК, состоящая из нескольких тысяч последовательно расположенных 4-х нуклеотидов, представляет собой код наследственности.

Код наследственности. Синтез белка. Первое сообщение по коду ДНК сделал американский биохимик Ниренберг в 1961 г. в Москве на международном биохимическом конгрессе. Сущность кода ДНК состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом расположенных нуклеотидов (триплет). Так, например участок, состоящий из Т-Т-Т (триплет из 3-х тиминсодержащих нуклеотидов) соответствует аминокислоте лизину, триплет А (аденин) - Ц (цитозин) - А (аденин)- цистеину и т.д. Допустим, что ген представлен цепочкой нуклеотидов, расположенных в следующем порядке: А-Ц-А-Т-Т-Т-А-А-Ц-Ц-А-А-Г-Г-Г. Разбив этот ряд на триплеты, мы сразу расшифруем, какие аминокислоты и в каком порядке будут располагаться в синтезируемом белке.

Число возможных сочетаний из 4-х имеющихся нуклеотидов по три равно 4×64. Исходя из этих соотношений, числа различных триплетов с избытком хватит для обеспечения информации по синтезу многочисленных белков, определяющих и структуру и функции организма. Для синтеза белка в рибосомы направляется точная копия этой информации в виде информационной РНК. В расшифровке и синтезе, кроме и-РНК, участвует большое число молекул различных транспортных рибонуклеиновых кислот (т-РНК), рибосомы и ряд ферментов. Каждая из 20 аминокислот связывается с Т-РНК - молекула с молекулой. Каждой из 20 аминокислот соответствует своя т-РНК. У т-РНК имеются химические группы, способные «узнавать» свою аминокислоту, выбирая именно ее из наличных аминокислот. Происходит это с помощью специальных ферментов. Узнав свою аминокислоту, т-РНК вступает с ней в соединение. К началу цепочки (молекулы) и-РНК присоединяется рибосома, которая, продвигаясь по и-РНК, соединяет друг с другом в полипептидную цепочку именно те аминокислоты, порядок которых зашифрован нуклеотидной последовательностью данной И-РНК. В результате образуется молекула белка, состав которого закодирован в одном из генов.

Ядрышки - неотъемлемая структурная часть ядра. Это сферические тельца. Они очень изменчивы, меняют свою форму и структуру, появляются и исчезают. Их бывает одно, два. Для каждого растения определенное число. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь; они, по-видимому, участвуют в синтезе рибонуклеиновых кислот. Если ядрышко разрушить сфокусированным пучком рентгеновских или ультрафиолетовых лучей, то клеточное деление подавляется.

Роль ядра в жизни клетки. Ядро служит контролирующим центром клетки- оно направляет клеточную активность и содержит носителей наследственности (гены), определяющие признаки данного организма. Роль ядра можно выявить, если с помощью микрохирургических приемов удалить его из клетки и наблюдать последствие этого. Ряд опытов, доказывающих важную роль в регуляции клеточного роста, провел Геммерлинг на одноклеточной зеленой водоросли Acetobularia. Эта морская водоросль достигает высоты 5 см, внешне напоминает гриб, имеет подобие "корней" и "ножки". Вверху заканчивается большой дисковидной "шляпкой". Клетка этой водоросли имеет одно ядро, располагающееся в базальной части клетки.

Гаммерлинг установил, что если перерезать ножку, то нижняя часть продолжает жить и полностью регенерируют шляпку после операции. Верхняя же часть, лишенная ядра, выживает в течение некоторого времени, но, в конце концов, погибает, не будучи в состоянии восстановить нижнюю часть. Следовательно, ацетобулярии ядро необходимо для метаболических реакций, лежащих в основе роста.

Ядро способствует образованию клеточной оболочки. Это можно проиллюстрировать экспериментами с водорослью Voucheria и Spyrogyra. Выпуская из перерезанных нитей в воду содержимое клеток, мы можем получить комочки цитоплазмы с одним, с несколькими ядрами и без ядер. В первых двух случаях клеточная оболочка формировалась нормально. В случае отсутствия ядра оболочка не образовывалась.

В опытах И.И.Герасимова (1890г.) со спирогирой было установлено, что клетки с двойным ядром удваивают длину и толщину хлоропласта. В безъядерных клетках продолжается процесс фотосинтеза, образуется ассимиляционный крахмал, но при этом затухает процесс его гидролиза, что объясняется отсутствием гидролитических ферментов, которые могут быть синтезированы в рибосомах лишь согласно информации ДНК ядра. Жизнь протопласта без ядра неполноценна и недолговечна. В экспериментах И.И. Герасимова безъядерные клетки спирогиры жили 42 дня и погибали. Одна из важнейших функций ядра состоит в снабжении цитоплазмы рибонуклеиновой кислотой, необходимой для синтеза белка в клетке. Удаление ядра из клетки ведет к постепенному падению содержания РНК в цитоплазме и замедлению синтеза белка в ней.

Наиболее важна роль ядра в передаче признаков от клетки клетке, от организма к организму и осуществляет это в процессе деления ядра и клетки в целом.

Клеточное деление. Размножаются клетки делением. При этом из одной клетки образуется две дочерних с тем же набором наследственного материала, заключенного в хромозомах, что и материнская клетка. В соматических клетках хромозомы представлены двумя, так называемыми гомологическими хромозомами, в которых заложены аллельные гены (носители противоположных признаков, например, белый и красный цвет лепестков гороха и т.д.), признаков двух родительских пар. В связи с этим в соматических клетках тела растения всегда удвоенный набор хромозом, обозначаемый 2п. Хромозомы обладают выраженной индивидуальностью. Количество и качество хромозом - характерный признак каждого вида. Так, в клетках земляники диплоидный набор хромозом равен 14, (2n), яблони -34, топинамбура - 102 и т.д.

Митоз (кариокинез) – деление соматических клеток был впервые описан Э. Руссовым(1872г.) и И.Д.Чистяковым (1874). Его сущность заключается в том, что из материнской клетки путем деления образуется две дочерние клетки с тем же набором хромозом.Клеточный цикл слагается из интерфазы и собственно митоза. Методом микроавторадиографии установлено, что самой длительной и сложной является интерфаза - период "покоящегося" ядра, т.к. в этот период происходит удвоение ядерного материала. Интерфаза делится на три фазы:

Q1 - пресинтетическая (ее длительность 4-6 часов);

S - синтетическая (10-20 часов);

Q2 - постсинтетическая (2-5 часов).

Во время Q1 фазы идет подготовка к редупликации ДНК. А в S-фазу происходит редупликация ДНК, клетка удваивает запас ДНК. В Q2-фазу формируются ферменты и структуры, необходимые для запуска митоза. Таким образом, в интерфазе молекулы ДНК в хромозомах расщепляются на две одинаковые нити, происходит сборка на их матрице информационных РНК. Последняя уносит информацию о структуре специфических белков в цитоплазму, а в ядре каждая из нитей ДНК достраивает недостающую половинку своей молекулы. В этом процессе удвоения (редупликация) проявляется уникальная особенность ДНК, состоящая в способности ДНК точно воспроизводить саму себя. Образовавшиеся дочерние молекулы ДНК автоматически получаются точными копиями родительской молекулы, т.к. при редупликации к каждой половинке присоединяются комплементарные (А-Т; Г-Ц; и т.д.) основания из окружающей среды.

В профазу митотического деления удвоенные хромозомы становятся заметными. В метафазе все они располагаются в экваториальной зоне, располагаясь в один ряд. Образуются нити веретена (из микротрубочек, соединяющихся друг с другом). Оболочка ядра и ядрышко исчезают. Утолщенные хромозомы расщепляются вдоль на две дочерние хромозомы. В этом заключается суть митоза. Он обеспечивает точное распределение удвоенных молекул ДНК между дочерними клетками. Тем самым обеспечивает и передачу зашифрованной в ДНК наследственной информации.

В анафазе дочерние хромозомы начинают отходить к противоположным полюсам. В центре появляются первые фрагменты клеточной оболочки (фрагмобласт).

В телофазе происходит оформление ядер в дочерних клетках. Содержимое материнской клетки (органеллы) распределяется между образующимися дочерними. Полностью формируется клеточная оболочка. На этом заканчивается цитокинез (рис.17).

Мейоз - редукционное деление был обнаружен и описан в 90-х годах прошлого столетия В.И.Беляевым. Сущность деления заключается в том, что из соматической клетки, содержащей 2п (двойной, диплоидный) набор хромозом, образуется четыре гаплоидных клетки, с"n", половинным набором хромозом. Этот тип деления является сложным и состоит из двух этапов. Первый - редукция хромозом. Удвоенные хромозомы располагаются в экваториальной зоне попарно (две параллельно расположенные гомологичные хромозомы). В этот момент может происходить коньюгация (сцепление) хромозом, кроссинговер (перекрест) и в результате - обмен участками хромозом. В результате этого часть генов отцовских хромозом переходит в состав материнских хромозом и наоборот. Внешний вид тех и других хромозом в результате этого не меняется, но их качественный состав становится иным. Отцовская и материнская наследственности перераспределяются и смешиваются.

В анафазе мейоза гомологичные хромозомы с помощью нитей веретена расходятся по полюсам, на которых после небольшого периода покоя (исчезают нити, но перегородка между новыми ядрами не формируется) начинается процесс митоза - метафаза, при которой все хромозомы располагаются в одной плоскости и происходит их продольное расщепление на дочерние хромозомы. При анафазе митоза с помощью веретена они расходятся по полюсам, где и формируется четыре ядра и в итоге - четыре гаплоидные клетки. В клетках некоторых тканей при их развитии под влиянием некоторых факторов происходит незавершенный митоз и количество хромозом в ядрах удваивается за счет того, что не расходятся по полюсам. В результате таких нарушений естественного или искусственного характера возникают организмы тетраплоиды и полиплоиды. С помощью мейоза формируются половые клетки - гаметы, а также споры, элементы полового и бесполого размножения растений (рис.18).

Амитоз - прямое деление ядра. При амитозе веретено деления не образуется и оболочка ядра не распадается, как при митозе. Раньше амитоз рассматривался как примитивная форма деления. Сейчас установлено, что он связан с деградацией организма. Представляет собой упрощенный вариант более сложного деления ядра. Амитоз встречается в клетках и тканях нуцеллуса, эндосперма, паренхиме клубней, черешков листьев и т.д.

(от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды ( рис. 1, а). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В таких клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), но длина колеблется, достигая у нитчатых форм 7-60 мкм.

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами ( рис. 1, б), у них четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , мембранное пространство и внешняя мембрана , обращенная к цитозолю. Внешняя мембрана отделяет ее от остальной цитоплазмы. Толщина внешней мембраны около 7 нм, она не связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс , или митоплазму . Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания (складки) внутрь митохондрий. Такие выпячивания ( кристы , рис. 27) чаще всего имеют вид плоских гребней. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

Митохондрии специализируются на синтезе АТФ путем транспорта электронов и окислительного фосфорилирования. (рис 21-1). Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует.

Митохондрии - это "энергетические станции" эукариотических клеток. В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. АТФ - "универсальная валюта", которой клетки расплачиваются за все свои энергетические расходы. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.

Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы.

Митохондриальный матрикс гомогенен и имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки. С помощью электронного микроскопа на внутренней мембране и кристах со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Это ферменты, образующие молекулы АТФ. Их может быть до 400 на 1 мкм.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Обычно митохондрии располагаются в местах, где необходима энергия для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки. Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [ Скулачев В.П., 1989 ].

Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.

II. Митохондрии (строение и функции)

Полисомы. Синтез цитоплазматических белков

Рибосомы представляют собой мельчайшие органеллы, присутствующие в цитоплазме клетки. Несмотря на свои размеры, они являются сложными молекулярными ансамб­леями, состоящими из рибосомальной РНК (р-РНК) различной длины и рибосомальных белков . В цитоплазме рибосомы встречаются в виде 2-х форм:

1. В диссоциированном состоянии (две субъединицы: малая и большая), которое свидетельствует об их неактивном статусе;

2. В ассоциированном виде – это форма их активного статуса.

Большая субъединица образуется тремя молекулами РНК, имеет форму полушара с 3 выступами, взаимодействующие с «шипиками» малой субъединицы.

Малая субъединица содержит лишь одну молекулу РНК и выглядит в виде «шапочки» с шипиками, обращёнными в сторону большой субъединицы. Ассоциация субъединиц рибосомы – это взаимодействие рельефов их поверхностей.

Функции субъединиц:

1. Малая ответственна за связывание с матричной РНК;

2. Большая – за образование полипептидной цепи.

Полисомы – это группа рибосом (от 5 до 30) связанных нитью м-РНК с образованием функционального комплекса. На нём происходит синтез цитоплазматических белков, необходимых клетке для роста, развития органелл дифференцировки.

Этапы синтеза цитоплазматических белков:

1. Выход из ядра м-РНК;

2. Сборка рибосом;

3. Образование функциональной полисомы;

4. Синтез сигнального пептида;

5. Считывание последовательности аминокислот в составе пептида сигнал-распознающей частицы (СРЧ);

6. Завершение синтеза цитоплазматического белка на полисоме. См рис. 1

Рис. 1: Схема синтеза цитоплазматических белков

II. Митохондрии (строение и функции)

Митохондрии – это система энергообеспечения клетки. На светооптическом уровне их выявляют при окраске по Альтману, они выглядят в виде зёрнышек и нитей. В цитоплазме они распределены диффузно, а в специализированных клетках сосредоточенны в участках, где имеется наибольшая потребность в энергии.

Электронномикроскопический уровень организации митохондрии : в ней выделяют две мембраны: наружную и внутреннюю. См. рис. 2

Рис. 2: Схема строения митохондрии

Наружная мембрана – это мешок с относительно ровной поверхностью, она по химическому составу и свойствам близка к плазмолемме, отличается она более высокой проницаемостью и содержит ферменты метаболизма жирных кислот, фосфолипидов и липидов.

Функция:

1. Отграничение митохондрии в гиалоплазме;

2. Транспорт в митохондрию субстратов для клеточного дыхания.

Внутренняя мембрана – неровная, она формирует кристы в виде пластин (ламеллярные кристы) с увеличением площади её поверхности. Главным компонентом этой мембраны являются молекулы белков, относящиеся к ферментам дыхательной цепи, цитохромы.

На поверхности крист в некоторых клетках описывают грибовидные частицы (F 1 -частицы), в которых различают головку (9 нм) и ножку (3 нм). Считают, что именно здесь происходит синтез АТФ и АДФ.

Между наружной и внутренней мембранами образуется небольшое (около 15 – 20 нм) пространство, которое называют наружной камерой митохондрий. Внутренняя камера ограничена соответственно внутренней митохондриальной мембраной и содержит матрикс.

Матрикс митохондрий имеет гелеобразную фазу и отличается высоким содержанием белка. В нём встречаются митохондриальные гранулы – частицы диаметром 20 – 50 нм высокой электронной плотности, они содержат ионы Са 2+ и Mg 2+ . Матрикс митохондрий содержит также митохондриальные ДНК и рибосомы. На первых происходит синтез транспортных белков митохондриальных мембран и некоторых белков, участвующих в фосфолировании АДФ. ДНК здесь состоит из 37 генов и не содержит некодирующие последовательность нуклеотидов.

Функции митохондрий:

1. Обеспечение клетки энергией в виде АТФ;

2. Участие в синтезе стероидных гормонов;

3. Участие в синтезе нуклеиновых кислот;

4. Депонирование кальция.

Митохондрии – преобразователи энергии и её поставщики для обеспечения клеточных функций – занимают значительную часть цитоплазмы клеток и сосредоточены в местах высокого потребления АТФ (например, в эпителии канальцев почки они располагаются вблизи плазматической мембраны (обеспечение реабсорбции), а в нейронах – в синапсах (обеспечение электрогенеза и секреции). Количество митохондрий в клетке измеряется сотнями. Митохондрии имеют собственный геном. Органелла функционирует в среднем 10 суток, обновление митохондрий происходит путем их деления.

Морфология митохондрии

Митохондрии чаще имеют форму цилиндра диаметром 0,2-1 мкм и длиной до 7 мкм (в среднем около 2 мкм). У митохондрий две мембраны – наружная и внутренняя; последняя образует кристы. Между наружной и внутренней мембранами находится межмембранное пространство. Внемембранный объем митохондрии – матрикс.

Наружная мембрана проницаема для многих мелких молекул.

Межмембранное пространство. Здесь накапливаются ионы Н + , выкачиваемые из матрикса, что создает протонный градиент концентрации по обе стороны внутренней мембраны.

Внутренняя мембрана избирательно проницаема; содержит транспортные системы для переноса веществ (АТФ, АДФ, Р 1 , пирувата, сукцината, α-кетоглурата, малата, цитрата, цитидинтрифосфата, ГТФ, дифосфатов) в обоих направлениях и комплексы цепи переноса электронов, связанные с ферментами окислительного фосфорилирования, а также с сукцинатдегидрогеназой (СДГ).

Матрикс. В матриксе присутствуют все ферменты цикла Кребса (кроме СДГ), ферменты β-окисления жирных кислот и некоторые ферменты других систем. В матриксе находятся гранулы с Mg 2+ и Ca 2+ .

Цитохимические маркёры митохондрий – цитохромоксидаза и СДГ.

Функции митохондрий

Митохондрии выполняют в клетке множество функций: окисление в цикле Кребса, транспорт электронов, хемиосмотическое сопряжение, фосфорилирование АДФ, сопряжение окисления и фосфорилирования, функцию контроля внутриклеточной концентрации кальция, синтез белков, образование тепла. Велика роль митохондрий в программированной (регулируемой) гибели клеток.

Теплорепродукция. Естественный механизм разобщения окислительного фосфорилирования функционирует в клетках бурого жира. В этих клетках митохондрии имеют атипичную структуру (уменьшен их объем, увеличена плотность матрикса, расширены межмембранные пространства) – конденсированные митохондрии. Такие митохондрии могут усиленно захватывать воду и набухать в ответ на тироксин, увеличение концентрации Ca 2+ в цитозоле, при этом усиливается разобщение окислительного фосфорилирования, и происходит выделение тепла. Эти процессы обеспечивает специальный разобщающий белок термогенин. Норадреналин из симпатического отдела вегетативной нервной системы усиливает экспрессию разобщающего белка и стимулирует теплопродукцию.

Апоптоз. Митохондрии играют важную роль в регулируемой (программированной) гибели клеток – апоптозе, выделяя их в цитозоль факторы, повышающие вероятность гибели клетки. Одним из них является цитохром С – белок, переносящий электроны между белковыми комплексами во внутренней мембране митохондрий. Выделяясь из митохондрий, цитохром С включается в состав апоптосомы, активирующей каспазы (представители семейства киллерных протеаз).