Меню

Рассчитать концентрацию пыли в воздухе. Методы определения концентрации пыли в воздухе рабочей зоны

Техника

Существует множество отраслевых документов описывающее пылевую обстановку в помещении. Это СНИПы, ГОСТЫ и рассматривают они ее со своих, профессиональных точек зрения. Но нигде в них нет цифр ограничивающих содержание пыли в бытовых и офисных помещениях. Это вызвано в первую очередь тем, что в отделке помещениях этих категорий используются самые разные материалы. А именно от применяемых отделочных материалов, материалов применяемых в оборудовании помещений и конструкции помещений (вентиляции и кондиционирования). А установив нормативы по пыли для бытовых и офисных помещений проектировщики рискуют не уложиться в них.

В 2004 году введен в действие наиболее широкий документ определяющий нормативы по содержанию в воздухе пыли. Это "Межгосударственный стандарт ГОСТ ИСО 14644 -1-2002, Чистые помещения и связанные с ними контролируемые среды, Часть 1, Классификация чистоты воздуха".

Вот такое длинное и незамысловатое название. Для нас, в данном случае интересна табл. 1. из раздела 3.

Ранее существовал ГОСТ Р 50776-95, который отличается нормированием содержание микроорганизмов (см. табл.1 выделенный розовым цветом столбец), а значения количества пыли не округлены.

Учитывая, что нам нужны ориентиры по концентрации пыли, данные этих двух ГОСТ" ов сведены в одну таблицу.

Таблица 1, классы чистоты по взвешенным в воздухе частицам для чистых помещений и чистых зон

Класс N ИСО

(N - классификационное число)

Максимально допустимая концентрация частиц, частиц/м 3 , с размерами равными или большими следующих значений, мкм МК
0,1 0,2 0,3 0,5 1,0 5,0
Класс 1 ИСО 10 2 нд нд нд нд нд
Класс 2 ИСО 100 24 10 4 нд нд нд
Класс 3 ИСО 1000 237 102 35 8 нд нд
Класс 4 ИСО 10000 2370 1020 352 83 нд нд
Класс 5 ИСО 100000 23700 10200 3520 832 29 5
Класс 6 ИСО 1000000 237000 102000 35200 8320 293 50
Класс 7 ИСО нк нк нк 352000 83200 2930 100
Класс 8 ИСО нк нк нк 3520000 832000 29300 500
Класс 9 ИСО нк нк нк 35200000 8320000 293000 нк
Из-за неопределенностей, возникающих при счете частиц, при классификации следует использовать значения концентрации, имеющие не более трех значащих цифр

нк - счетная концентрация частиц данного размера для данного класса не контролируется,

нд - частиц данного и большего размера в воздухе не должно быть,

МК - предельно допустимое число микроорганизмов, шт/м 3

Я пока не нашел данных относящихся к категории по чистоте воздуха в бытовых и офисных помещении. Хотя мне попадались нормативы для чистых помещений лечебных учреждений.

И зная о жестком нормировании содержания пыли в воздухе чистых производственных помещений имеющих категорию, можно сделать вывод, что классы (категории) 7, 8, 9 наиболее близки к офисным (7, 8) и бытовым (9) помещениям.

Заключение

Хотя ГОСТ определяет категорию "для чистых помещений и чистых зон" нас интересует класс ИСО 9, как (на мой взгляд) наиболее близкий к бытовым помещениям и Класс ИСО 7 и 8 для офисных помещений оборудованных кондиционированием и фильтрацией воздуха соответственно.

Приведенные цифры могут использоваться только как ориентиры при проведении оценочных расчетов по воздушным фильтрам электронной и вычислительной техники и ее эксплуатационных регламентов.

Для точных расчетов следует применять значения уровней запыленности указанные в паспортах помещений, где расположена аппаратура.

К сведению

Количество пыли в атмосферном воздухе может быть весьма различным. В местности со сплошным зеленым массивом, над озерами и реками количество пыли в воздухе составляет менее 1 мг/м 3 , в промышленных городах - 3-10 мг/м 3 , в городах с неблагоустроенными улицами - до 20 мг/м 3 . Размеры частиц колеблются от 0,02 до 100 мкм.

Санитарные нормы СССР-(СН 245-71) ограничивают среднесуточную предельно допустимую концентрацию нетоксичной пыли ей атмосферном воздухе населенных мест 0,15 мг/м 3 , однако в действительности концентрация пыли часто бывает больше, поэтому лучше исходить из опытных данных о степени загрязнения воздуха в конкретном районе.

Концентрация взвешенных веществ в атмосферном воздухе Новосибирска превышает Предельно Допустимые Концентрации. Если ПДК – 0,15 мг/м³,

то в 2004 году было 0,26 мг/м³,

в 2005 г. – 0,21 мг/м³,

а в 2006г. – 0,24 мг/м³.

В центре столицы Эстонии Таллине, зарегистрирована концентрация тонкой пыли до 0,07 мг/м 3 .

В Англии воздуху городов, в которых жилые кварталы с каминным отоплением сочетаются с крупными промышленными предприятиями, свойственно пылесодержание до 0,5 мг/м 3 ,

В США концентрация пыли в воздухе достигла 1,044 мг/м 3 ,

В ФРГ наибольшая концентрация пыли отмечалась в городах Рура - до 0,7 мг/м 3 .

Основную опасность для человеческого организма представляют именно частицы размером от десятых долей микрометра до 10 и в особенности до 5 мкм.

Структура пыли бытовых помещений и офисов отличается от атмосферной пыли и пыли производственных помещений и существенно зависит от их отделки и оборудования и мебели размещенных в помещении.

Подготовил А.Сорокин,

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

КАФЕДРА «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

ОПРЕДЕЛЕНИЕ ЗАПЫЛЕННОСТИ ВОЗДУХА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ И РАБОЧИХ ЗОН

Методические указания к выполнению лабораторной работы

Барнаул 2004 г

УДК 613.646: 613.14/15

Определение запыленности воздуха производственных помещений и рабочих зон: Методическое пособие/ Сост.: A. M. Маркова, ; под редакцией.- Барна4. - 12с.

Методические указания содержат сведения о действии пыли на организм человека, методику определения и оценки концентрации пыли в воздухе производственных помещений.

Предназначены для лабораторных занятий со студентами всех специальностей.

© Алтайский государственный аграрный университет

Определение запыленности воздуха в производственных помещениях

ЦЕЛЬ РАБОТЫ : Изучить методику определения и оценки концентрации пыли в воздухе рабочей зоны

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

1. Ознакомиться с классификацией пыли и действием ее на организм человека

2. Изучить методику определения запыленности в производственных помещениях

3. Определить запыленность воздуха в рабочей зоне согласно заданию

Оборудование : 1. Аспиратор для отбора проб воздуха - модель 822

2. Весы аналитические

3. Фильтры АФА-В-18, АФА-В-10

4. Патрон для фильтра (аллонж)

5. Резиновые трубки

6. Экспериментальная установка

1. ОБЩИЕ СВЕДЕНИЯ О ПЫЛИ


Во многих производствах в силу особенностей технологического процесса, применяемых способов производства, характера сырьевых материалов, промежуточных и готовых продуктов и многих других причин образуется пыль, загрязняющая воздух помещений и рабочих зон. Следовательно, находящаяся в воздухе пыль становится одним из факторов производственной среды, определяющих условия труда работающих.

Пылью называют измельченные или полученные иным путем мелкие частицы твердых веществ, витающие (находящиеся в движении) в воздухе рабочей зоны. Пыль может находиться в двух состояниях: взвешенной в воздухе (аэрозоль) и осевшей на поверхности стен, оборудования, осветительных приборов (аэрогель).

Характер и выраженность вредного действия, прежде всего, зависят от химического состава пыли, который, главным образом, определяется ее происхождением. Важное значение имеет классификация пыли по размеру частиц (дисперсности). Она определяет устойчивость частиц в воздухе и глубину проникания в органы дыхания.

Таблица 1

Классификация производственной пыли

По способу образования

По происхождению

По дисперсности

Возникает при разрушении твердых пород (бурение, дробление, размол), транспортировке и упаковке сыпучих материалов , механической обработке изделий (шлифовка, полировка и др.)

I . Органическая:

а) растительная (злаки, волокна и др.)

б) животная (шерстяная, кожаная и др.)

в) микроорганизмы и продукты их распада

г) искусственная (пластмассовая, пыль красителей и др.)

I . Видимая

Имеет размер свыше 10 мкм и быстро выпадает из воздуха

II . Микроскопиче ская

Имеет размер от 10 до 0,25 мкм и медленно выпадает из воздуха

II . Аэрозоль конденсации

Возникает при испарении и последующей конденсации в воздухе паров металлов и неметаллов (электросварка, испарение металлов при электроплавке и других технологических процессах)

II . Неорганическая:

а) минеральная (кремниевая, силикатная и др.)

б) металлическая (пыль железа, цинка, свинца и др.)

III . Смешанная:

а) минерально-металлическая (например, смесь пыли железа и кремния)

б) органическая и неорганическая (например, пыль злаков и почвы)

III . Ультрамикро скопическая

Имеет размер менее 0,25 мкм, длительно витает в воздухе, подчиняясь законам броуновского движения

По способу образования различают пыли (аэрозоли) дезинтеграции и конденсации. В практических целях производственную пыль классифицируют по способу образования, происхождению, размерам частиц - дисперсности (табл. 1).

2. ДЕЙСТВИЕ ПЫЛИ НА ОРГАНИЗМ ЧЕЛОВЕКА

Вредное влияние производственной пыли на здоровье рабочих зависит от многих факторов.

Различные виды пыли вследствие разных физико-химических свойств представляют различную опасность для работающих и во всех случаях оказывают неблагоприятное действие на организм.

Воздействие нетоксической пыли на органы дыхания вызывает специфическое заболевание, называемые пневмокониозом.

Пневмокониозы - собирательное название, включающее в себя пылевые заболевания легких от воздействия всех видов пыли (силикоз, силикатоз, антракоз).

Наиболее распространенной и тяжелой формой пневмокониоза считается силикоз от выделения пыли, содержащей двуокись кремния. Силикатозы возникают у лиц, работающих в условиях воздействия пыли силикатов, в которых двуокись кремния находится в связанном состоянии с другими соединениями, антракоды - при выдыхании угольной пыли.

Промышленная пыль может приводить к развитию профессиональных бронхитов , пневмоний, астматических ринитов и бронхиальной астмы. Под влиянием пыли развиваются конъюнктивиты, поражения кожи - шероховатость, шелушение, утолщение, огрубение, угри, асбестовые бородавки, экземы, дерматиты и др. Систематическая работа в условиях воздействия пыли предопределяет повышенную заболеваемость рабочих с временной нетрудоспособностью , что связано со снижением защитных иммунобиологических функций организма. Действие пыли могут усугублять тяжелый физический труд, охлаждение, некоторые газы (SO3), приводящие при комбинированном влиянии к более быстрому возникновению и усилению тяжести пневмокониоза. Аэрозоли металлов (ванадий, молибден, марганец, кадмий и др.), пыль ядохимикатов при несоблюдении гигиенических условий труда у рабочих могут вызывать профессиональные заболевания.


Электрозаряженность пылевых частиц влияет на устойчивость аэрозоля и биологическую его активность. Частицы, несущие электрический заряд, в 2-8 раз дольше задерживаются в дыхательном тракте. Электрозаряженность пылинок влияет на активность фагоцитоза (Прим. Фагоцитоз - одна из защитных реакций организма, заключающаяся в активном захвате и поглощении живых клеток и неживых частиц одноклеточными организмами или особыми клетками многоклеточных организмов - фагоцитами.).

Контроль за наличием и содержанием пыли в воздухе рабочей зоны является важнейшей задачей. При анализе производственного процесса должны быть установлены источники и причины образования пыли, дана гигиеническая оценка с учетом качественного состава и количества ее в определенном объеме воздуха. На основании этого оценивается значение пылевого фактора, при необходимости привлекаются сведения о состоянии здоровья рабочих и эти данные позволяют обосновать оздоровительные мероприятия .

Кроме гигиенического значения пылевыделение имеет и другие отрицательные стороны: оно наносит экономический урон, ускоряя износ оборудования и ведя к потере ценных материалов, ухудшает общесанитарное состояние производственной среды, в частности, уменьшает освещенность вследствие загрязнения окон и осветительной арматуры. Некоторые виды пылей - угольная, сахарная и др. могут способствовать возникновению пожаров и взрывов.

3. МЕТОДИКА ОПРЕДЕЛЕНИЯ ЗАПЫЛЕННОСТИ ВОЗДУХА РАБОЧЕЙ ЗОНЫ

3.1. Общие положения

Для проведения мероприятий по созданию здоровых и безопасных условий труда и выбора их оптимального варианта на каждом рабочем месте, где образуется пыль, следует периодически контролировать ее концентрацию. В соответствии с ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» периодичность контроля (за исключением веществ с остронаправленным механизмом действия) устанавливается в зависимости от класса опасности вредного вещества: для I класса - не реже 1 раза в 10 дней, II класса - не реже 1 раза в месяц, III и IV классов - не реже 1 раза в квартал. При возможном поступлении в воздух рабочей зоны вредных веществ с остронаправленным механизмом действия должен быть обеспечен непрерывный контроль с сигнализацией о превышении ПДК. При установленном соответствии содержания вредных веществ III, IV классов опасности уровню ПДК допускается проводить контроль не реже 1 раза в год.

При определении содержания пыли в рабочей зоне пробы воздуха отбирают на высоте примерно 1,5 м. (что соответствует зоне дыхания) в непосредственной близости к месту работы. Для оценки распространения пыли по помещению пробы воздуха отбирают также в так называемых нейтральных точках, т. е. на некотором расстоянии (1-3-5 м и более) от мест образования пыли, а также в проходах.

Иногда запыленность воздуха необходимо определить для оценки эффективности существующих или реконструированных обеспыливающих устройств. В этих случаях пробы воздуха отбирают до и после их установки во включенном и выключенном состоянии. В период отбора проб воздуха обязательно регистрируются условия отбора: температура и барометрическое давление воздуха на рабочем месте, вид выполняемой операции, факторы, которые могут повлиять на запыленность воздуха (открытые или закрытые фрамуги, включенная или выключенная вентиляция и др.), время и длительность отбора, скорость протягивания воздуха.

Для определения концентрации пыли в воздухе и ее состава используют различные методы, которые можно разделить на две группы:

прямые, основанные на предварительном осаждении пылевых частиц (фильтрационные, седиментационные и др.) с их последующим взвешиванием;

косвенные (механический, вибрационно-частотный, электрический, радиационный и др.). Они обеспечивают определение массовой концентрации пыли на основе измерения, либо перепада давления на фильтрующем материале при прокачивании через него запыленного воздуха, либо частоты (амплитуды) вибрации, либо тока смещения, возникающего в результате трения частиц пыли о стенки корпуса первичного преобразователя, либо интенсивности проникающей радиации через фильтр с пылью и т. д.

Полученное разовое или среднее значение концентрации пыли сравнивают с ПДК (табл. 2).

Таблица 2

Предельно допустимые концентрации (ПДК)

пыли в воздухе рабочей зоны

(ГОСТ 12.1.005-88)

Величина ПДК, Мг/м3

Преимущественное агрегатное состояние

Класс опасности

Особенности действия на организм

1. Пыль, образуемая при ра боте с:

известняком, глиной, карбидом кремния (карборунда), цементом, чугуном

2. Пыль растительного и животного происхождения:

а) зерновая

б) мучная, древесная и др. (с примесью диоксида кремния менее 2%)

Продолжение таблицы 2

в) лубяная, хлопчатобумажная, льняная, шерстяная, пуховая и др. (с примесью диоксида кремния менее 2%

г) с примесью диоксида кремния от 2-10%

3. Углерода пыли:

а) коксы: каменноугольный, пековый, нефтяной, сланцевый

б) антрацит с содержанием в пыли до 5% диоксида кремния

в) другие ископаемые угли с содержанием свободного диоксида кремния до 5%

4. Пыль стеклянного и минерального волокон

5. Пыль табака, чая

6. Нитроаммофоска

7. Калия нитрат

8. Калия сульфат

Примечание: а - аэрозоль;

А - вещества, способные вызывать аллергические заболевания в производственных условиях;

Ф - аэрозоли преимущественно фиброгенного действия.

3.2. Определение запыленности массовым методом

Наиболее распространенный массовый метод определения концентрации пыли основан на прокачивании заданного объема загрязненного воздуха через фильтр, определении привеса пыли на фильтре и последующем вычислении концентрации пыли в воздухе. Полнота поглощения вредных веществ, загрязняющих воздух рабочей зоны, должна соответствовать требованиям ГОСТ 12.1.005-88 и устанавливаться экспериментально.

В качестве фильтрующего материала чаще всего используют аэрозольные фильтры АФА с дисками из ткани ФП (фильтр Петрянова) и ФПП (фильтр перхлорвиниловый Петрянова) с высокой степенью фильтрации (близкой к 100%) за счет своих электростатических свойств. Чаще всего применяют фильтры, выполненные в виде дисков площадью 10 и 18 см, которые закрыты защитными подложками и вложены в пакет из полиэтилена (АФА-В-10, АФА-В-18).

Для протягивания запыленного воздуха через фильтр применяют аспиратор М-822 (рис. 1), работающий от переменного тока напряжением 220 В.

Рис. 1. Аспиратор М-822М для отбора проб воздуха:

1 - корпус аспиратора; 2 - ротаметры; 3 - ручка регулятора расхода просасываемого воздуха; 4 - всасывающие штуцеры ротаметра; 5 - соединительный шланг; 6 - аллонж (патрон); 7 - разгрузочный клапан; 8 - тумблер; 9 - лампочка

В корпусе аспиратора 1 размещены: электродвигатель с воздуходувкой и четыре ротаметра 2, используемых для отбора проб воздуха на содержание пыли. Объем протягиваемого воздуха за единицу времени регулируют ручкой вентилей 3. Всасывающий штуцер 4 ротаметра с помощью резинового шланга 5 соединяют с аллонжем (патроном) 6, представляющий собой полый конус с гнездом и гайкой для крепления в нем фильтра. Разгрузочный клапан 7 служит для предотвращения перегрузки электродвигателя при отборе проб воздуха с малыми скоростями и облегчения пуска аппарата. Прибор включают в работу тумблером 8. При этом загорается лампочка 9 шкал ротаметров и поплавки в них поднимаются потоком воздуха, показывая его расход.

3.3. Практическое задание

На основе изучения методики определения запыленности массовым методом определить концентрацию пыли с помощью лабораторной установки (рис. 2).

Рис. 2. Схема установки для определения запыленности воздуха:

1 - пылевсасывающее устройство (насос); 2 - ротаметр; 3 - пылевая камера; 4 - фильтр; 5 - аллонж (патрон); 6 - соединительный шланг; 7 - ручка регулятора расхода просасываемого воздуха

Последовательность взятия проб воздуха на запыленность:

Взвесить чистый фильтр;

Установить на ротаметре выбранный расход воздуха;

Установить фильтр в патрон;

Подсоединить патрон к пылевой камере;

Включить пылевсасывающий прибор и засечь время;

По истечению установленного времени прибор выключить;

Результаты занести в протокол отчета и сделать выводы;

Привести рабочее место в порядок.

Отбор пыли на фильтр

Фильтр 4 в защитном кольце (рис. 2) вставить в патрон и закрепить в нем прижимной гайкой. Аналогичные операции проводят и для фильтра в кассете. Соединить патрон резиновой трубкой с пылевой камерой 3. На месте взятия пробы аллонж 5 (патрон) укрепить в штатив (или другим способом в зависимости от местных условий) и соединить резиновыми трубками 6 последовательно с ротаметром 2 и пылевсасывающим устройством 1.

Включить аспирационный прибор и установить выбранный расход воздуха по ротаметру с помощью ручки вентиля 7.

Начало и конец отбора отмечают по часам или секундомеру.

В течение всего времени проб отбора необходимо по ротаметру следить за скоростью движения воздуха через аппаратуру.

Продолжительность взятия пробы зависит от степени запыленности воздуха, скорости отбора пробы и необходимой навески пыли на фильтре. Время отбора проб воздуха для токсической пыли составляет 15 мин, для веществ преимущественно фиброгенного действия - 30 мин. За это время отбирают одну или несколько проб через равные промежутки времени, вычисляют среднее значение. Продолжительность отбора пыли можно определить и расчетным путем по формуле:

Влажность" href="/text/category/vlazhnostmz/" rel="bookmark">влажности от 30 до 80% составляет 1 мг.

После окончания взятия пробы патрон с фильтром отключают зажимом от аспирационного прибора и вынимают из патрона фильтр с отобранной пробой. Фильтр складывают пополам пылью внутрь, помещают в среду, в котором он находился до взятия пробы.

При отборе проб на каждый фильтр ведется протокол, записывается дата, место и условия взятия проб воздуха, номер фильтра, скорость и продолжительность взятия пробы.

Расчет концентрации пыли

Фактическую концентрацию пыли рассчитывают по формуле:

https://pandia.ru/text/80/369/images/image006_49.gif" width="147" height="47 src=">

где V - скорость просасывания воздуха по ротаметру, л/мин;

Р - атмосферное давление воздуха в момент отбора пробы, кПа;

t - температура воздуха в момент отбора, оС.

Полученные результаты и значение ПДК Сдоп занести в протокол отчета и сделать выводы о запыленности воздушной среды в месте отбора пробы.

Протокол отчета

Таблица 1

Условия отбора пыли

Таблица 2

Результаты измерения

Вопросы для самоконтроля:

1. Классификация пыли

2. В чем заключается действие пыли на различные организмы человека?

3. Методы определения запыленности воздуха

4. В чем заключается принцип работы аспиратора?

5. В чем заключается методика определения запыленности воздуха массовым методом?

6. Как подготовить аспиратор к работе?

7. Как подготовить фильтры к отбору проб?

8. Виды применения фильтров и их отличие?

10. Требования к условиям отбора пробы

11. Как определить время взятия пробы?

12. Какова цель оценки запыленности воздуха рабочей зоны?

ЛИТЕРАТУРА К РАБОТЕ

1. Каспаров труда и промышленная санитария. - М.; «Медицина». 1977.-С-106-128.

2. ГОСТ 12.1.016-79 Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ.

3. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

4. Р 21.2.755-99 2.2 Гигиена труда. Гигиенические критерии оценки и классификация условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса. Руководство. Минздрав России. Москва 1999 г.

Исходными данными для расчета являются:

Минералогический состав пыли;

Основные свойства пыли - плотность (насыпная и истинная), коагуляция, смачиваемость, слипаемость, абразивность, удельное электрическое сопротивление;

Свойства газового потока - температура, плотность, кинематическая или динамическая вязкость;

Начальная концентрация пыли в месте ее образования;

Дисперсный состав пыли, т. е. содержание фракций по "частным остаткам" или по "полным проходам".

Последовательность расчета:

1. По ГОСТ 12.2.043-80 выделяется пять основных классификационных групп аэрозолей:

I - очень крупнодисперсная пыль;

II - крупнодисперсная пыль (например, песок для строительных растворов по ГОСТ 8736-77); ,

III - среднедисперсная пыль (например, цемент);

IV - мелкодисперсная пыль (например, кварц молотый по ГОСТ 9077-82);

V - очень мелкодисперсная пыль.

Классификационная группа пыли определяется по номограмме (рис. 4.1). Для пользования номограммой следует иметь результаты ситового анализа пыли. Определяется дисперсный состав по "полным проходам". На номограмму наносятся точки, соответствующие содержанию первых пяти фракций, и, соединяя их, получим линию, указывающую на классификационную группу.

Таблица 4.1

Классификационная группа пыли по слипаемости Характеристика классификационной группы Характерные пыли
I Не слипающаяся ≤ 60 Па Шлаковая пыль; песок кварцевый
II Слабослипающаяся 60-300 Па Коксовая пыль; апатитовая сухая пыль; летучая зола при слоевом сжигании углей всех видов и при сжигании сланцев; магнезитовая пыль; доменная пыль (после первичных осадителей); шлаковая пыль
III Среднеслипающаяся 300-600 Па Летучая зола при пылевидном сжигании каменных углей без недожога; торфяная зола; влажная магнезитовая пыль; металлическая пыль; колчеданы; оксиды свинца, цинка и олова; сухой цемент; сажа; сухое молоко; мучная пыль; опилки
IV Сильнослипающаяся > 600 Па Гипсовая и алебастровая пыль; нитрофоска; двойной суперфосфат; цементная пыль, выделенная из влажного воздуха; волокнистая пыль (асбест, хлопок, шерсть и др.); все пыли с размером частиц < 10 мкм

Таблица 4.2

Пример. Определить классификационную группу пыли, если по опытным данным она имеет следующий дисперсный состав:

Размер частиц, мкм..... < 5 5-10 10-20 20-40 40-60 60

Решение: Рассчитываем дисперсный состав пыли по "полным проходам":

Размер частиц, мкм............. <5 <10 <20 <40 <60

Наносим точки, соответствующие содержанию первых пяти фракций по "полным проходам" на номограмму (рис. 4.1) и, соединив их, получим линию, расположенную в зоне III. Следовательно, данная пыль относится к III классификационной группе. Распределение дисперсности частиц за пределом интервала 560 мкм. При оценке дисперсности пыли эта область не учитывается.

В тех случаях, когда график фракционного состава аэрозоля, нанесенный на классификационную номограмму, пересекает границы зон, пыль относят к классификационной группе высшей из зон.

2. Все пыли IV и V групп дисперсности практически относятся к сильнослипающимся пылям, а пыли III группы - к среднеслипающимся. В табл. 4.1 дана характеристика пыли по слипаемости.

3. Частицы мельче 10 мкм, в особенности мельче 5 мкм, как правило становятся несмачиваемыми (гидрофобными) независимо от их состава.

4. В вентиляционной практике взрывоопасной пылью считаются аэрозоли, нижний концентрационный предел распространения пламени которых менее 65 г/м 3 . Пыли, у которых нижний предел более 65 г/м 3 , считаются горючими.

5. Используя технологическую карту производства, цеха, участка, составляется схема системы аспирации (рис. 4.2), стр. 243 . Порядок расчета воздуховодов систем аспирации приведен в работе .

6. Подбирается тип пылевого вентилятора. Характеристики вентиляторов приведены на рис. 4.3 и в Справочнике и . Для этого определяется требуемый расход воздуха Q и потери давления в сети Р.

6.1. Объем воздуха следует определять по формулам в табл. 11, 10 и таблицам, приведенным в работе , как сумму, которая складывается из объема воздуха, вносимого в укрытие поступающим материалом (Q э), и объема (Q н), просасываемого через неплотности укрытия для предотвращения поступления пыли в помещение:

Q = Q э + Q н, м 3 /ч

Концентрация аэрозолей в выбросах уходящего воздуха при расходе воздуха более 15000 м 3 /ч:

С ух = 100·R,мг/м 3 , (4.1)

R - коэффициент, принимаемый в зависимости от предельно допустимой концентрации (ПДК) аэрозолей в воздухе рабочей зоны производственных помещений, согласно ГОСТ 12.1.005 - 88, мг/м 3:

ПДК........................ До 2 2-4 4-6 6-10

R ............................. 0,3 0,6 0,8 1,0

Концентрацию аэрозолей в выбросах объемом менее 15 тыс. м 3 с учетом меньшего влияния на загрязнение атмосферы допускается принимать несколько большей по формуле

С ух =(160 - 4·Q)·R, мг/м 3 , (4.2)

Q - объем выброса, тыс. м 3 .

Концентрация, рассчитанная по данным формулам, проверяется на условие, что в результате рассеивания выброса в атмосфере концентрация аэрозолей с учетом фоновой загрязненности атмосферы не превышает:

а) в приземном слое атмосферы населенных пунктов - концентраций, указанных в СН 245-71 , но не более ПДК для населенных мест ;

б) в воздухе, поступающем в производственные и вспомогательные здания и сооружения через приемные отверстия систем приточной вентиляции и через открывающиеся проемы - 30 % ПДК тех же аэрозолей, в рабочей зоне помещений - по ГОСТ 12.1.005-88. Валовой выброс каждого источника не должен превышать установленного для него ПДВ.

Если известно количество образующей пыли (М, мг/ч), то требуемую производительность вентилятора можно определить, как:

Q = М /(С пр - С ух) ,

С пр - концентрация пыли в приточном воздухе, мг/м 3 ;

С ух - концентрация пыли в уходящем воздухе.

6.2. Потери давления в сети определяются по формуле:

Р = Р тр ·L + Р м, Па,

Р тр - удельная потеря давления на трение на 1 п. м. воздуховода, Па;

L - длина участка воздуховода, м;

Р м - потеря давления на местные сопротивления, Па.

Расчетная таблица сети воздуховодов систем аспирации приведена в работе .

Удельную потерю давления на трение для круглых воздуховодов определяют по формуле:

Р тр = (λ/d)·(V 2 ·ρ/2)

λ - коэффициент сопротивления трения;

d - диаметр воздуховода, м;

V - скорость воздуха в воздуховоде, м/сек;

ρ - плотность воздуха, кг/м 3 ;

V 2 ·ρ/2 - скоростное (динамическое) давление воздуха, Па.

Значения λ/d следует принимать по табл. 22.56 .

Для воздуховодов прямоугольного сечения за величину d принимают эквивалентный диаметр d., таких круглых воздуховодов, которые при одинаковой скорости имеют те же потери давления на трение, что и прямоугольные воздуховоды:

d э = 2ab/(a + b), м,

а и b - размеры стенок прямоугольного воздуховода, м.

Потери давления на местные сопротивления определяются по формуле:

P м = eζ·(V 2 ·ρ/2), Па,

ζ - сумма коэффициентов местного сопротивления.

Коэффициенты местных сопротивлений приведены в таблицах гл. 22 .

Пример расчета потерь давления в сети воздуховодов приведен в табл. 22.58 .

6.3.Для определения площади сечения воздуховодов следует воспользоваться рекомендуемыми скоростями движения воздуха, которые приведены в табл. 22.57 .

Сечение воздуховодов должно обеспечивать скорость движения воздуха не ниже допустимой для пыли данного вида:

V = 1,3·(ρ м) 1/3 ,

ρ м - объемная масса материала, кг/м 3

При подъеме механических примесей на высоту следует учитывать формулы (22.16), (22.17) .

7. По расходу воздуха и величине потерь давления подбираем тип и номер требуемого вентилятора (рис. 4.3), пользуясь характеристикой пылевых вентиляторов, которые также приведены в приложениях Справочника .

8. Выбор и расчет пылеуловителей.

Пылеуловители, применяемые для очистки воздуха от аэрозольных частиц, делятся на 5 классов (табл. 4.2).

Пылеуловители 1 класса отличаются большим расходом энергии (высоконапорные пылеуловители Вентури), сложностью и дороговизной эксплуатации (многопольные электрофильтры, рукавные фильтры и пр.)

В табл. 4.2 указаны границы эффективности пылеуловителей каждого из классов на основе классификации аэрозолей по рис. 4.1. Первое из значений эффективности относится к нижней границе соответствующей зоны, вторые - к верхней. Эффективность рассчитана из условий отделения от воздуха только практически полностью (эффективно) улавливаемых частиц, размер которых указан в табл. 4.2. Действительная эффективность пылеуловителей больше за счет частичного улавливания частиц по размеру меньших, чем указано в табл. 4.2.

9. Рассчитываются потери давления в пылеуловителе. Они находятся, как составная часть скоростного давления, т. е.:

Р н = ζ н ·(ρ г ·V 2 /2),

ζ н - коэффициент местного сопротивления пылеуловителя;

Для грубой оценки величины сопротивления (потерь давления) различных пылеуловителей можно воспользоваться данными, приведенными в табл. 4.3.

Детальный выбор типа пылеуловителя приводится в гл. 4 .

При определении потерь давления в циклоне ζ н = ζ ц, величина ζ ц определяется по формуле:

ζ ц = k 1 k 2 ζ o + Δζ o

k 1 - коэффициент, зависящий от диаметра циклона (табл. 4.4);

k 2 - коэффициент на запыленность воздуха (табл. 4.5);

ζ o - коэффициент местного сопротивления циклона D=500 мм (табл. 4.6);

Δζ o - коэффициент, зависящий от принятой компоновки группы циклонов (табл. 4.7); для одиночных циклонов Δζ o = 0.

10. Рассчитываются основные размеры выбранного пылеуловителя. Они определяются в зависимости от производительности выбранного вентилятора - (Q, м 3 /ч) и оптимальных скоростей для данного вида пылеуловителя:

Так, для циклонов оптимальный диаметр определяется по формуле:

D = 0,94·(Q 2 - ρ г ·ζ ц /P ц) 1/2 ,

ζ - коэффициент местного сопротивления циклона;

Р ц - потери давления в циклоне;

ρ г - плотность газового потока.

Можно диаметр циклона также найти из площади сечения циклона (F), которая определяется как:

F = Q/V o , м 3

V o - скорость движения воздуха (табл. 4.6), м/с.

Зная диаметр циклона D, определяются основные размеры пылеуловителя:

D вых = D·0,59,

D вых - диаметр выхлопной трубы.

Размеры входного патрубка:

а х в = D·0,26 x D·1,11

Общая высота Н = D·4,26

11. Определяется коэффициент очистки воздуха от пыли:

h = ΔМ/М 1 = М 1 - М 2 /М 1 = 1 - М 2 /М 1 ,

М 1 и М 2 - соответственно, количество пыли, поступающей и выходящей из пылеотделителя;

ΔМ - количество улавливаемой пыли.

Таблица 4.3

Тип Вид Класс пылеуловителя Область целесообразного применения
Классификационная группа аэрозолей по дисперсности Сопротивление, Па
I II III IV V
Гравитационные Пылеосадочные камеры (произвольной конструкции) + + - - - 100-200
Инерционные, циклоны Циклоны большой пропускной способности:
одиночные циклоны ЦН-15, ЦН-24 + + - - - 600-750
групповые -циклоны ЦН-15 + + - - - 600-750
Циклоны высокой эффективности:
одиночные циклоны СКЦН-34 - + + - - 1000-1200
мокропленочные циклоны ЦВП - + + - - 600-800
Скрубберы ВТИ-ПСП скоростные промыватели СИОТ - + + - - 900-1100
Струйные, мокрые: ПВМ - - + + - 1200-1950
ПВМК, ПВМС, ПВМБ - - + + - 2000-3000
капельные, типа Вентури КМП - - + + - 3000-4000
Тканевые Рукавные пылеуловители СМЦ-101, СМЦ-166Б, ФВК (ГЧ-1БФМ), ФРКИ - - + + - 1200-1250
Сетчатые капроновые, металлические сетки для улавливания волокнистой пыли, Вентури, электрофильтры + - - - - 150-300
Волокнистые Уловители туманов кислот и щелочей ФВГ-Т - - - + - 800-1000
Уловители аэрозолей масел (ротационные) - - - + - 800-1000
Электрические Уловители туманов масел и маслянистых жидкостей УУП - - - + + 50-100

Таблица 4.4

Поправочный коэффициент k 1

Таблица 4.5

Поправочный коэффициент k 2

Таблица 4.6

Коэффициенты местных сопротивлений ζциклонов диаметром 500 мм и оптимальные скорости движения воздуха

Марка циклона воздуха, м/сек Значения t, циклонов
с выбросом в атмосферу с улиткой на выхлопной трубе при групповой установке ζ o
v o v вх ζ o ζ вх ζ o ζ вх
ЦН-11 3,5 - 6,1 5,2
ЦН-15 3,5 - 7,8 6,7
ЦН-Г5у 3,5 - 8,2 7,5
ЦН-24 4,5 - 10,9 12,5 -
СДК-ЦН-33 - 20,3 31,3 -
СК-ЦН-34м - - - 30,3 -
СК-ЦН-34 1,7 - 24,9 - 30,3 -
СИОТ - 12-15 - - 4,2 -
ЛИОТ - 12-15 - 4,2 - 3,7 -
ВЦНИИОТ - 12-15 - 10,5 10,4 -

Таблица 4.7

Коэффициент Δζ o

ЛИТЕРАТУРА

1. Справочник проектировщика. Часть 3. Вентиляция и кондиционирование воздуха. Книга 1. М.: Стройиздат, 1992.

2. Справочник проектировщика. Часть 3. Вентиляция и кондиционирование воздуха. Книга 2. М.: Стройиздат, 1992.

3. Справочник проектировщика. Вентиляция и кондиционирование воздуха. Под общей редакцией И. Г. Староверова. М.: Стройиздат, 1969.

4. ГОСТ 12.2.43-80.

5. ГОСТ 12.01.005-88. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

6. Санитарные нормы проектирования промышленных предприятий. (СН 245-71), М.: Стройиздат, 1971.

7. Титов В.П. и др. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий. М.: Стройиздат, 1985.

производится аспирационным весовым (гравиметрическим) методом с помощью электроаспиратора (рис. 2).

Рис. 2. Электроаспиратор для отбора разовых проб пыли

Пыль − это дисперсная система, где раздробленное ве-щество (дисперсная фаза) находится в непрерывной дис-персной среде, т.е. это взвешенные в воздухе, медленно осе-дающие твердые частицы размером от 0,001 до 100 мкм или аэрозоль.

Принцип действия электроаспиратора заключается в протягивании определенного объема воздуха через аспира-


тор с осаждением пылевых частиц на бумажном фильтре. Метод основан на улавливании пыли из просасываемого че-рез фильтр воздуха при стандартной скорости аспирации 10-20 л/мин. с последующим пересчетом на 1 м 3 воздуха (1 м 3 = 1000 л). Анализ воздуха может производиться как в пробах, отобранных однократно (продолжительность отбора проб 15-20 мин.), так и многократно не менее 10 раз в сутки через равные интервалы времени с усреднением полученных дан-ных (кратность отбора проб в течение суток определяет вы-бор для оценки вида ПДК – среднесуточной или максималь-ной разовой). Отбор проб воздуха производят в зоне дыха-ния. Для отбора пробы фильтр укрепляют в аллонже (патро-не) электроаспиратора, пропускают через него воздух со ско-ростью 20 л/мин. (V ) в течение 10 мин. (Т ). Объем отобран-ной пробы воздуха рассчитывают по формуле:

υ=Т V,

где T – время отбора пробы, мин., V – скорость отбора про-бы, л/мин. Негигроскопичный аэрозольной фильтр, пред-ставляющий собой ультратонкие волокна полимера, зафик-сированный в бумажном кольце, взвешивают на аналитиче-ских весах с точностью до 0,1 мг до (А 1 ) и после (А 2 ) отбора пробы воздуха. Содержание пыли Х в 1 м 3 воздуха рассчиты-вают по формуле:

Х = [(А 2 − А 1) 1000]/ υ,

где Х – содержание пыли в воздухе, мг /м 3 ; А 1 и А 2 − вес фильтра до и после отбора пробы, мг; υ − объем воздуха, л.

Для гигиенической оценки загрязнения воздуха пылью установленное содержание пыли сравнивают с максимальной или среднесуточной ПДК нетоксичной пыли в атмосферном воздухе; характеризуют дисперсный и химический состав, морфологическое строение, электрическое состояние, приро-ду (органическая, неорганическая, смешанная) и механизм образования (аэрозоль дезинтеграции или конденсации).


Гигиенические нормативы пыли для атмосферного воз-

− максимальная разовая ПДК мр 2 = 0,5 мг/м 3 ,

− среднесуточная ПДК с/с 3 = 0,15 мг/м 3 .

В помещениях ЛПУ требования к содержанию пыли в воздухе определяются классификацией помещений по чисто-те и ограничиваются размером частиц 0,5 мкм и 5,0 мкм.



В производственных помещениях: ПДК нетоксичной пыли = 10 мг/м 3 , ПДК пыли, содержащей свободный диоксид кремния, = 1-2 мг/м 3 .

3. Определение микробного загрязнения воздуха осу-

ществляется аспирационным методом в модификации Кро-това. Аппарат Кротова представляет собой аспиратор со съемной крышкой. Исследуемый воздух всасывается со ско-ростью 20-25 л/мин. через клиновидную щель в крышке при-бора. При переносе аппарата Кротова из одного помещения в другое его поверхность обрабатывают дезинфицирующим раствором. Пробу воздуха отбирают 10 мин. (Т ) со скоро-стью 20 л/мин (V ). Объем отобранной пробы воздуха рассчи-тывают по формуле.

Методы определения запыленности воздуха

Запыленность воздуха можно определить гравиметрическим (весовым), счетным (микроскопическим), фотометрическим и некоторыми другими методами.

Удаление пыли из воздуха может быть осуществлено различными способами: аспирационным, основанной на просасывании воздуха через фильтр; седиментационными, основанный на процессе естественного оседания пыли на стеклянные пластинки или банки с последующим подсчетом массы пыли, осевший на 1 м поверхности; с помощью электроосаждения, принцип которого заключается в том, что создается электрическое поле большого напряжения, в котором пылевые частицы электризуются и притягиваются к электродам.

В санитарно-гигиенической практике основным методом определения запыленности принят гравиметрический метод, потому что при постоянстве химического состава первичное значение имеет масса пыли, задержалась в организме человека. Определение только массы пыли не дает полной картины его вредности для человека и технологического процесса, так как при одинаковой массе может быть разный химический, гранулометрический состав пыли, что сказывается на его воздействии на человека, оборудования и технологии. Полная характеристика пыли состоит из его массы, содержащейся в единице объема воздуха, химического и дисперсного состава.

Счетный (микроскопический) метод дает возможность определить общее количество пылевых частиц в единице объема воздуха и соотношение их размеров. Для этого пыль, содержащаяся в определенном объеме воздуха, осаждают на стекло, покрытое прозрачной клейкой пленкой. Под микроскопом определяют форму, количество и размеры пылевых частиц.

Качественную характеристику пыли определяют фотометрическим методом с Помощью текущего ультрафотометра, которым регистрируются отдельные пылевые частицы с помощью сильного бокового света.

Для отделения пыли от воздуха применяются различные фильтры, которые задерживают пылевые частицы размером до 0,1 мкм и более, в зависимости от размера пор фильтра. Такие фильтры выпускаются во многих странах. Материал фильтров может быть различным в зависимости от его назначения: целлюлоза, синтетические материалы, асбест (для определения горючих частиц пыли). Также применяются комбинированные фильтры. Выпускаются специальные фильтры, пропитанные иммерсионных маслом, что делает их прозрачными - это и позволяет дополнительно делать микроскопические исследования пыли.

В Украине чаще всего применяются фильтры АФА (аналитический фильтр аэрозольный) круглой формы с плоскостями фильтрации 3; 10, 20 см2, которые имеют опорное кольцо, фильтрующий элемент и защитное бумажное кольцо с выступлением. Фильтрующий элемент состоит из равномерного слоя ультратонких волокон из полимера на марлевой основе или без нее (фильтр Петрянова). Фильтры позволяют работать с ними без предварительного подсушивания через гидрофобные свойства полимера.

Методы нормализации состава воздуха рабочей зоны

Существует много различных способов и мер, предназначенных для поддержания чистоты воздуха производственных помещений в соответствии с требованиями санитарных норм. Все они сводятся к конкретным мерам:

1. Предотвращение проникновения вредных веществ в воздухе рабочей зоны за счет герметизации оборудования, уплотнения соединений, люков и отверстий, совершенствование технологического процесса.

2. Удаление вредных веществ, попадающих в воздух рабочей зоны, за счет вентиляции, аспирации или очистки и нормализации воздуха с помощью кондиционеров.

3. Применение средств защиты человека.

Герметизация и уплотнение являются основными мерами по совершенствованию технологических процессов, в которых используются или образуются вредные вещества. Применение автоматизации позволяет вывести человека из загрязненного помещения в помещение с чистым воздухом. Совершенствование технологических процессов позволяет заменять вредные вещества безвредными, отказываться от применения пылящих процессий, заменять твердое топливо на жидкое или газообразное, устанавливать газ, пылеуловители в технологический цикл и др.

При несовершенства технологии, когда избежать проникновения вредных веществ в воздух не удается, применяют их интенсивное удаление с помощью вентиляционных систем (газ, пар, аэрозоли) или аспирационных систем (твердые аэрозоли). Установка кондиционеров воздуха в помещениях, где есть особые требования к его качеству, создает нормальные микроклиматические условия для работающих.

Особые требования предъявляются к помещениям, где проводятся работы с вредными веществами, пылящих. Так, пол, стены, потолок должны быть гладкими, легко мыться. В цехах, где выделяется пыль, регулярно делают влажную или вакуумное уборки.

В помещениях, где нельзя создать нормальные условия, соответствующие нормам микроклимата, применяют средства индивидуальной защиты (313).

Согласно ГОСТ 12.4.011-87 "ССБТ Средства защиты работающих. Классификация", все 313, в зависимости от назначения, делятся на следующие классы: изолирующие костюмы, средства защиты органов дыхания, одежда специальная защитная, средства защиты ног, средства защиты рук, средства защиты головы, средства защиты лица, средства защиты глаз, средства защиты органов слуха, средства защиты от падения с высоты и другие меры предосторожности, защитные дерматологические средства, средства защиты комплексные.

Эффективное применение 313. зависит от их правильного выбора и условий эксплуатации. При выборе необходимо учитывать конкретные условия производства, вид и длительность воздействия вредного фактора, а также индивидуальные особенности человека. Только правильное применение 313 может максимально защитить работающего. Для этого работники должны быть ознакомлены с ассортиментом и назначением 313.

Для работы с ядовитыми и загрязняющих веществ пользуются спецодеждой - комбинезонами, халатами, фартуками и др.; для защиты от кислот и щелочей - резиновой обувью и перчатками. Для защиты кожи, рук, лица, шеи применяют защитные кремы и пасты: антитоксические, водостойкие, Жиростойкие. Глаза от возможных ожогов и аэрозолей защищают очками с герметичной оправой, масками, шлемами.

К средствам индивидуальной защиты органов дыхания (СИЗОД) относятся респираторы, промышленные противогазы и изолирующие дыхательные аппараты, применяемые для защиты от вредных веществ (аэрозолей, газов, паров), находящихся в окружающей воздухе.

По принципу действия СИЗОД подразделяются на фильтрующие (применяются при наличии в воздухе свободного кислорода не менее 18% и ограниченного содержания вредных веществ) и изолирующие (при недостаточном для дыхания содержания в воздухе кислорода и неограниченного количества вредных веществ).

По назначению фильтрующие СИЗОД делятся на:

противопылевые - для защиты от аэрозолей (респираторы ШБ-1, "Лепесток", "Кама", "Снежок", У-2К, РП-К, "Астра-2", Ф-62Ш, РПА и др.);

противогазовые - для защиты от газопароподибних вредных веществ (респираторы РПГ-67А, РПГ-67В, РПГ-67КД, противогазы марок А, В, КД, Г, Е, СО, М, БКФ и др.);

газопылезащитные - для защиты от парогазоподибних и аэрозольных вредных веществ одновременно (Респираторы Ру 60М, "Снежок ПГ", "Лепесток-Г");

изолирующие аппараты - бывают шланговые и автономные.

Изолирующие шланговые аппараты предназначены для работы в атмосфере, содержащий менее 18% кислорода. Они имеют длинный шланг, по которому подается воздух для дыхания с чистой зоны. Недостатки их в том, что дыхательный шланг мешает работать, не позволяет свободно двигаться (противогаз шланговый ПШ-И без принудительной подачи воздуха, длина шланга 10 м; ПШ-2 с воздуходувкой - обеспечивает работу двух человек одновременно, длина шлангов 20 м; респиратор для художников РМП-62; пневмошлемы ЛИЗ-4, ЛИЗ-5, миотом-49 - работают от компрессорной воздушной линии).

Изолирующие автономные дыхательные аппараты работают от автономного химического источника кислорода или от баллонов с воздухом или дыхательной смесью. Они предназначены для выполнения спасательных работ или эвакуации людей из загазованной зоны.

Саморятивиик шахтный малогабаритный ШСМ-1. Имеет химический источник кислорода. Срок пользования 20-100 минут в зависимости от интенсивности расходования кислорода (энергозатрат), вес 1,45 кг.

Респиратор изолирующий вспомогательный РВЛ-1. Имеет баллон со сжатым кислородом и регенеративный химический патрон для регенерации кислорода. Работает 2:00, вес 9 кг.

Респиратор "Урал-7". Принцип действия такой же, как в респиратора РВЛ-И, но он более габаритный. Действует 5:00, весит 14 кг. Носится за плечами, масс амортизационные устройства для удобства ношения.

Респиратор Р-30 имеет такую ​​же систему жизнеобеспечения, и приведенный выше. Рассчитан на 4:00 действия, весит 11,8 кг.

Дыхательный аппарат АСВ-2 состоит из 2-х воздушных баллонов, маски или загубника, шланга, редуктора, имеет манометр для контроля за давлением воздуха, предохранительный клапан и др. Предназначен для защиты органов дыхания в условиях загрязненной атмосферы.