Меню

Теоремы софиста горгия и современная математика.

Мебель

Мы уже убедились в том, что если числовая последовательность имеет предел, то элементы этой последовательности приближаются к нему максимально плотно. Даже на очень маленькой дистанции всегда можно найти два элемента, чья дистанция будет еще меньше. Это называется фундаментальной последовательностью, или последовательностью Коши. Можем ли мы утверждать, что данная последовательность имеет предел? Если она формируется на

Если мы возьмем квадрат со стороной, равной единице, то легко сможем просчитать его диагональ с помощью теоремы Пифагора: $d^2=1^2+1^2=2$, то есть значение диагонали будет равно $\sqrt 2$. Теперь у нас есть два числа, 1 и $\sqrt 2$, представленные двумя отрезками. Однако у нас не получится установить соотношение между ними, как мы делали это раньше. Невозможно

Определить, где находится точка Р - внутри или снаружи некой фигуры - иногда очень просто, как например для фигуры, изображенной на рисунке: Однако для более сложных фигур, как, например, для той, что представлена ниже, сделать это сложнее. Для этого придется нарисовать линию карандашом. Однако при поиске ответов на подобные вопросы мы можем использовать один простой,

Ее обычно формулируют так: всякое натуральное число, отличное от 1, единственным образом представляется в виде произведения простых чисел или так: всякое натуральное число единственным образом представляется в виде произведения степеней разных простых чисел последнее разложение часто называют каноническим, хотя и не всегда, требуя при этом, чтобы простые множители входили в это разложение в порядке возрастания.

Эта теорема чрезвычайно полезна для решения задач на остатки степеней, и хотя она является вполне серьезной теоремой из теории чисел и не входит в школьный курс, ее доказательство может быть проведено на нормальном школьном уровне. Оно может быть проведено различными способами, и одно из самых простых доказательств опирается на формулу бинома, или бинома Ньютона, которая

Нередко в методической литературе можно встретить понимание косвенного доказательства как доказательства от противного. На самом деле это очень узкое толкование этого понятия. Метод доказательства от противного является одним из наиболее известных косвенных методов доказательства, но далеко не единственным. Другие косвенные методы доказательства хотя и часто применяются на интуитивном уровне, но это применение редко осознается, и

Часто учителя, используя скалярное произведение векторов, чуть ли не моментально доказывают теорему Пифагора и теорему косинусов. Это, конечно, заманчиво. Однако требуется комментарий. В традиционном изложении дистрибутивность скалярного произведения векторов доказывается позже теоремы Пифагора, ибо последняя применяется в этом доказательстве, хотя бы и косвенно. При этом возможны варианты этого доказательства. В школьных учебниках геометрии, как и

Грандиозное событие

Как-то в новогоднем выпуске рассылки о том, как произносить тосты, я вскользь упомянул, что в конце ХХ века произошло одно грандиозное событие, которого многие не заметили - была, наконец-то доказана так называемая Великая теорема Ферма . По этому поводу среди полученных писем я обнаружил два отклика от девушек (одна из них, насколько помню - девятиклассница Вика из Зеленограда), которых удивил данный факт.

А меня удивило то, насколько живо девочки интересуются проблемами современной математики. Поэтому, думаю, что не только девочкам, но и мальчикам всех возрастов - от старшеклассников до пенсионеров, тоже будет интересно узнать историю Великой теоремы.

Доказательство теоремы Ферма - великое событие. А т.к. со словом "великий" не принято шутить, то знать историю теоремы, мне кажется, каждый уважающий себя оратор (а все мы, когда говорим - ораторы) просто обязан.

Если так получилось, что вы не любите математику так, как люблю ее я, то некоторые углубления в детали просматривайте беглым взором. Понимая, что не всем читателям нашей рассылки интересно блуждать в математических дебрях, я постарался не приводить никаких формул (кроме самого уравнения теоремы Ферма) и максимально упростить освещение некоторых специфических вопросов.

Как Ферма заварил кашу

Французский юрист и по совместительству великий математик XVII века Пьер Ферма (1601-1665) выдвинул одно любопытное утверждение из области теории чисел, которое впоследствии получило название Великой (или Большой) теоремы Ферма. Это одна из самых известных и феноменальных математических теорем. Наверно, ажиотаж вокруг нее был бы не так силен, если бы в книге Диофанта Александрийского (III век) "Арифметика", которую Ферма частенько штудировал, делая пометки на ее широких полях, и которую любезно сохранил для потомков его сын Сэмюэл, не была обнаружена примерно следующая запись великого математика:

"Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях".

Она-то, эта запись, и явилась причиной последующей грандиозной суматохи вокруг теоремы.

Итак, знаменитый ученый заявил, что доказал свою теорему. Давайте же зададимся вопросом: действительно ли он ее доказал или банально соврал? Или есть другие версии, объясняющие появление той записи на полях, не дававшей спокойно спать многим математикам следующих поколений?

История Великой теоремы увлекательна, как приключение во времени. В 1636 году Ферма заявил, что уравнение вида Хn+Yn=Zn не имеет решений в целых числах при показателе степени n>2. Это собственно и есть Большая теорема Ферма. В этой, казалось бы, простой с виду математической формуле Вселенная замаскировала невероятную сложность.

Несколько странным является то, что почему-то теорема опоздала с появлением на свет, поскольку ситуация назрела давно, ведь ее частный случай при n=2 - другая знаменитая математическая формула - теорема Пифагора, возникла на двадцать два столетия раньше. В отличие от теоремы Ферма, теорема Пифагора имеет бесконечное множество целочисленных решений, например, такие пифагоровы треугольники: (3,4,5), (5,12,13), (7,24,25), (8,15,17) … (27,36,45) … (112,384,400) … (4232, 7935, 8993) …

Синдром Великой теоремы

Кто только не пытался доказать теорему Ферма. Любой свежеоперившийся студент считал своим долгом приложиться к Великой теореме, но доказать ее всё никак никому не удавалось. Сначала не удавалось сто лет. Потом еще сто. Среди математиков стал развиваться массовый синдром: "Как же так? Ферма доказал, а я что, не смогу что ли?" и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Сколько бы теорему не проверяли - она всегда оказывалась верна. Я знал одного энергичного программиста, который был одержим идеей опровергнуть Великую теорему, пытаясь найти хотя бы одно ее решение методом перебора целых чисел с использованием быстродействующего компьютера (в то время чаще именовавшегося ЭВМ). Он верил в успех своего предприятия и любил приговаривать: "Еще немного - и грянет сенсация!". Думаю, что в разных местах нашей планеты имелось немалое количество такого сорта смелых искателей. Ни одного решения он, конечно же, не нашел. И никакие компьютеры, хоть даже со сказочным быстродействием, никогда не смогли бы проверить теорему, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

Самый виртуозный и плодотворный математик XVIII века Леонард Эйлер, архив записей которого человечество разгребало почти целый век, доказал теорему Ферма для степеней 3 и 4 (вернее, он повторил утерянные доказательства самого Пьера Ферма); его последователь в теории чисел, Лежандр - для степени 5; Дирихле - для степени 7. Но в общем виде теорема оставалась недоказанной.

В начале XX века (1907) состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма. Начался ажиотаж. Математические кафедры были завалены тысячами доказательств, но все они, как вы догадываетесь, содержали в себе ошибки. Говорят, что в некоторых университетах Германии, в которые в большом количестве поступали "доказательства" теоремы Ферма, были заготовлены бланки примерно такого содержания:

Уважаемый __________________________!

В Вашем доказательстве теоремы Ферма на ____ странице в ____ строчке сверху
в формуле:__________________________ обнаружена следующая ошибка:,

Которые рассылались незадачливым соискателям премии.

В то время в кругу математиков появилось полупрезрительное прозвище - фермист. Так называли всякого самоуверенного выскочку, которому не хватало знаний, но зато с лихвой хватало амбиций для того, чтобы второпях попробовать силенки в доказательстве Великой теоремы, а затем, не заметив собственных ошибок, гордо хлопнув себя в грудь, громко заявить: "Я первый доказал теорему Ферма!". Каждый фермист, будь он хоть даже десятитысячным по счету, считал себя первым - это и было смешным. Простой внешний вид Великой теоремы так сильно напоминал фермистам легкую добычу, что их абсолютно не смущало, что даже Эйлер с Гауссом не смогли справиться с ней.

(Фермисты, как ни странно, существуют и ныне. Один из них хоть и не считал, что доказал теорему, как классический фермист, но до недавних пор предпринимал попытки - отказался верить мне, когда я сообщил ему, что теорема Ферма уже доказана).

Наиболее сильные математики, может быть, в тиши своих кабинетов тоже пробовали осторожно подходить к этой неподъемной штанге, но не говорили об этом вслух, дабы не прослыть фермистами и, таким образом, не навредить своему высокому авторитету.

К тому времени появилось доказательство теоремы для показателя степени n

ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ Теорема, заключающаяся в том, что всякий многочлен степени n (n>0): f(z) = a0zn + a1zn-1 + … + an , где a0 / 0, над полем комплексных чисел имеет по крайней мере один корень z1, так что f(z1)=0. Из О.Т.А. и из теоремы Безу вытекает, что многочлен f(z) имеет в поле комплексных чисел ровно n корней (с учётом их кратностей). Действительно, согласно теореме Безу f(z) делится на z – z1 (без остатка), т.е. f(z) = f1(z)(z – z1), а отсюда многочлен f1(z) (n – 1)- й степени по О.Т.А. также имеет корень z2 и т.д. В конечном счёте мы придём к заключению, что f(z) имеет ровно n корней: f(z) = a0(z – z1)(z – z2) (z – zn). О.Т.А. называется так потому, что основное содержание алгебры в XVII-XVIII вв. сводилось к решению уравнений.

О.Т.А. была доказана впервые в XVII в. французским математиком Жираром, строгое же доказательство было дано в 1799 г. немецким математиком Гауссом. ТЕОРЕМА БЕЗУ Теорема об остатке от деления произвольного многочлена на линейный двучлен.Она формулируется следующим образом: остаток от деления произвольного многочлена f(x) на двучлен x – a равен f(a). Т.Б. названа по имени впервые сформулировавшего и доказавшего её французского математика XVIII в. Безу. Из Т.Б. вытекают следующие следствия: 1) если многочлен f(x) делится (без остатка) на x – a, то число a является корнем f(x); 2) если число a является корнем многочлена f(x), то f(x) делится (без остатка) на двучлен x – a; 3) если многочлен f(x) имеет по крайней мере один корень, то этот многочлен имеет ровно столько корней, какова степень этого многочлена (при этом учитывается кратность корней). ТЕОРЕМА ЧЕВЫ Если прямые, соединяющие вершины треугольника АВС с точкой О, лежащей в плоскости треугольника, пересекают противоположные стороны (или их продолжения) соответственно в точках A’ B’ C’, то справедливо равенство: (*) При этом отношение отрезков рассматривается как положительное, если эти отрезки имеют одинаковое направление, и отрицательное – в противном случае.

Т.Ч. можно записать и в такой форме: (ABC’)*(BCA’)*(CAB’) = 1, где (АВС’) – простое отношение трёх точек A, B и C’. Справедлива и обратная теорема: если точки C’, A’, B’ расположены соответственно на сторонах AB, BC и СА треугольника или их продолжениях так, что выполняется равенство (*), то прямые АА’, BB’ и CC’, пересекаются в одной точке или параллельны (пересекаются в несобственной точке). Прямые AA’, BB’ и СС’, пересекающиеся в одной точке и проходящие через вершины треугольника, называются прямыми Чевы или чевианами.

Т.Ч. носит проективный характер. Т.Ч. метрически двойственна теореме Менелая.

Т.Ч. названа по имени итальянского геометра Джованни Чева, доказавшего её (1678). ТЕОРЕМА КОСИНУСОВ 1. Т.К. плоской тригонометрии – утверждение о том, что во всяком треугольнике квадрат любой его стороны равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними: c2 = a2 + b2 – 2abcosC , где a, b, c – длины сторон треугольника, а C – угол, заключённый между сторонами a и b. Т.К. часто используется при решении задач элементарной геометрии и тригонометрии 2. Т.К. для стороны сферического треугольника: косинус одной стороны сферического треугольника равняется произведению косинусов двух других его сторон плюс произведение синусов тех же сторон на косинус угла между ними: cosa = cosb*cosc + sinb*sinc*cosA 3. Т.К. для угла сферического треугольника: косинус угла сферического треугольника равен произведению косинусов двух других углов, взятому с противоположным знаком, плюс произведение синусов двух других углов на косинус стороны, противолежащей первому углу: cosA =-cosBcosC + sinBsinCcosa. ТЕОРЕМА ЭЙЛЕРА 1. Т.Э. в теории сравнений утверждает, что если (a, m)=1, то, где f(m) – функция Эйлера (количество целых положительных чисел взаимнопростых с m, не превосходящих m). 2. Т.Э. о многогранниках утверждает, что для всякого многогранника нулевого рода справедлива формула: В + Г – Р = 2, где В – число вершин, Г – число граней, Р – число рёбер многогранника.

Однако впервые такую зависимость подметил ещё Декарт.

Поэтому Т.Э. о многогранниках исторически правильнее называть теоремой Декарта-Эйлера.

Число В + Г – Р называется эйлеровой характеристикой многогранника.

Т.Э. применяется и для замкнутых графов. ТЕОРЕМА ФАЛЕСА Одна из теорем элементарной геометрии о пропорциональных отрезках.Т.Ф. утверждает, что если на одной из сторон угла от его вершины последовательно отложить равные между собой отрезки и через концы этих отрезков провести параллельные прямые, пересекающие вторую сторону угла, то на второй стороне угла отложатся также равные между собой отрезки.

Частный случай Т.Ф. выражает некоторые свойства средней линии треугольника. ВЕЛИКАЯ ТЕОРЕМА ФЕРМА Утверждение П. Ферма о том, что уравнение xn + yn = zn (где n – целое число большее двух) не имеет решений в целых положительных числах.Несмотря на утверждение П. Ферма о том, что ему удалось найти удивительное доказательство В.Ф.Т которое он не приводит из-за недостатка места (это замечание написано было П. Ферма на полях книги Диофанта), до недавнего времени (середина 90-х) В.Т.Ф. в общем виде доказана не была. МАЛАЯ ТЕОРЕМА ФЕРМА Частный случай теоремы Эйлера, когда модуль m=p – простое число.

М.Т.Ф. формулируется так: если p простое число, то ap=a(mod p). В том случае, когда a не делится на p, из М.Т.Ф. следует: ap-1=1(mod p). М.Т.Ф. была открыта французским учёным Пьером Ферма. НЕРАВЕНСТВО ГЁЛЬДЕРА Для конечных сумм имеет вид: , или в интегральной форме: , где p > 1 и. Н.Г. часто применяется в математическом анализе.

Н.Г. является обобщением неравенства Коши в алгебраической форме и неравенства Буняковского в интегральной форме, в которые Н.Г. обращается при p = 2. ФОРМУЛА КАРДАНО Формула, выражающая корни кубического уравнения: x3+px+q=0 (*) через его коэффициенты. К виду (*) приводится всякое кубическое уравнение.Ф.К. записывается так: . Выбирая произвольно значение первого кубического радикала, следует выбрать то значение второго радикала (из трёх возможных), которое в произведении с выбранным значением первого радикала даёт (-p/3). Таким образом получают все три корня уравнения (*). До сих пор не ясно, кому принадлежит Ф.К.: Дж. Кардано, Н. Тарталье или С. Ферро. Ф.К. относится к XVI в. НЕРАВЕНСТВО КОШИ Неравенство, имеющее место для конечных сумм; очень важное и наиболее употребительное в различных областях математики и математической физики неравенство.

Впервые было установлено Коши в 1821 г. Интегральный аналог Н.К.: , установлен русским математиком В.Я. Буняковским. ТЕОРЕМА МЕНЕЛАЯ Если прямая пересекает стороны треугольника АВС или их продолжения в точках C’, A’ и B’ , то справедливо соотношение: (*) Отношение отрезков берётся положительным, если прямая пересекает сторону треугольника, и отрицательным, если прямая пересекает продолжение стороны.

Справедливо и обратное выражение: если выполняется равенство (*), где A, B, C – вершины треугольника, а A’, B’, C’ лежат на одной прямой.

Т. М. можно сформулировать в виде критерия расположения трёх точек A’, B’ и C’ на одной прямой: для того, чтобы 3 точки A’, B’ и C’ лежали на одной прямой, необходимо и достаточно, чтобы выполнялось соотношение (*), где A, B, C – вершины треугольника, а A’, B’, C’ принадлежат соответственно прямым BC, AC и AB. Т. М. была доказана древнегреческим учёным Менелаем (I в.) для сферического треугольника и, по-видимому, была известна Евклиду (III в. до н.э.). Т. М. является частным случаем более общей теоремы Карно. НЕРАВЕНСТВО МИНКОВСКОГО Неравенство для p-х степеней чисел, имеющее вид: , где целое p>1, а ak и bk – неотрицательные числа.

Н.М. является обобщением известного «неравенства треугольника», утверждающего, что длина одной стороны треугольника не больше суммы длин двух других его сторон; для n-мерного пространства расстояние между точками x=(x1, x2, …, xn) и y=(y1, y2, …, yn) определяется числом Н.М. было установлено немецким математиком Г. Минковским в 1896 г. ФОРМУЛЫ МОЛЬВЕЙДЕ Формулы плоской тригонометрии, выражающие следующую зависимость между сторонами (их длинами) и углами треугольника: ; , где a, b, c – стороны, а A, B, C – углы треугольника.

Ф.М. названы по имени немецкого математика К. Мольвейде, использовавшего их, хотя эти формулы были известны и другим математикам.БИНОМ НЬЮТОНА Название формулы, выражающей целую неотрицательную степень двучлена a+b в виде суммы степеней его слагаемых.

Б.Н. имеет вид: , где Cnk – биноминальные коэффициенты, равные числу сочетаний из n элементов по k, т.е. или. Если биноминальные коэффициенты для различных n=0, 1, 2, …, записать в последовательно идущие строки, то придём к треугольнику Паскаля. В случае произвольного действительного числа (а не только целого неотрицательного) Б.Н. обобщается в биноминальный ряд, а в случае увеличения числа слагаемых с двух на большее число – в полиномиальную теорему.ПОЛИНОМИАЛЬНАЯ ТЕОРЕМА Обобщение формулы бинома Ньютона на случай возведения в целую неотрицательную степень n суммы k слагаемых (k>2): , где суммирование в правой части распространено на всевозможные наборы целых неотрицательных чисел a1, a2, …, ak, дающих в сумме n. Коэффициенты A(n)a1, a2, … ,ak носят название полиномиальных и выражаются следующим образом: При k=2 полиномиальные коэффициенты становятся биноминальными коэффициентами.

ТЕОРЕМА ПОЛЬКЕ Формулируется так: три отрезка произвольной длины, лежащие в одной плоскости и исходящие из общей точки под произвольными углами друг к другу, могут быть приняты за параллельную проекцию пространственного ортогонального репера i, j, k (|i| = |j| =|k|). Теорема была сформулирована немецким геометром К. Польке (1860) без доказательства, а затем была обобщена немецким математиком Г. Шварцем, который дал её элементарное доказательство.

Теорему Польке-Шварца можно формулировать так: любой невырожденный четырёхугольник с его диагоналями можно рассматривать как параллельную проекцию тетраэдра, подобного любому данному.

Т.П. имеет большое практическое значение (любой четырёхугольник с его диагоналями можно принять, например, за изображение правильного тетраэдра) и является одной из основных теорем аксонометрии.ТЕОРЕМА ПТОЛЕМЕЯ Теорема элементарной геометрии, устанавливающая зависимость между сторонами и диагоналями четырёхугольника, вписанного в окружность: во всяком выпуклом четырёхугольнике, вписанном в окружность, произведение диагоналей равно сумме произведений его противоположных сторон, т.е. имеет место равенство: AC*BD = AB*CD + BC*AD Т.П. названа по имени древнегреческого учёного Клавдия Птолемея, доказавшего эту теорему.

Т.П. используется при решении задач по элементарной геометрии, при доказательстве частного случая теоремы сложения синусов.ФОРМУЛА СИМПСОНА Формула для вычисления объёмов тел с двумя параллельными основаниями: , где Qн – площадь нижнего основания, Qв – площадь верхнего основания, Qс – площадь среднего сечения тела. Под средним сечением тела здесь понимается фигура, полученная от пересечения тела плоскостью, параллельной плоскостям оснований и находящейся на равном расстоянии от этих плоскостей.

Через h обозначена высота тела. Из Ф.С как частный случай, получаются многие известные формулы объёмов тел, изучаемых в школе (усечённой пирамиды, цилиндра, шара и др.). ТЕОРЕМА СИНУСОВ Теорема плоской тригонометрии, устанавливающая зависимость между сторонами a, b, c произвольного треугольника и синусами противолежащих этим сторонам углов: , где R – радиус описанной около треугольника окружности.

Для сферической тригонометрии Т.С. аналитически выражается так: . ТЕОРЕМА СТЮАРТА Заключается в следующем: если A, B, C – три вершины треугольника, а D – любая точка на стороне BC, то имеет место соотношение: AD2*BC = AB2*CD + AC2*BD – BC*BD*CD , Т.С. названа по имени доказавшего её английского математика М. Стюарта и опубликовавшего её в труде «Некоторые общие теоремы» (1746, Эдинбург). Теорему сообщил Стюарту его учитель Р. Симсон, который опубликовал эту теорему лишь в 1749 г. Т.С. применяется для нахождения медиан и биссектрисс треугольников.

ТЕОРЕМА ТАНГЕНСОВ (ФОРМУЛА РЕГИОМОНТАНА) Формула плоской тригонометрии, устанавливающая зависимость между длинами двух сторон треугольника и тангенсами полусуммы и полуразности противолежащих им углов.Т.Т. имеет вид: , где a, b – стороны треугольника, A, B – соответственно противолежащие этим сторонам углы. Т.Т. также называют формулой Региомонтана по имени немецкого астронома и математика Иоганна Мюллера (по-латински Regiomontanus), установившего эту формулу. И. Мюллера называли «Кёнигсбержец»: по-немецки König – король, Berg – гора, а по-латински «король» и «гора» в родительном падеже – regis и montis.

Отсюда «Региомонтан» - латинизированная фамилия И. Мюллера. «Толковый словарь математических терминов», О.В. Мантуров ФОРМУЛЫ И ТЕОРЕМЫ НА VADIMSOFT-BEST. NAROD.RU.

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Copyright сайт - Олег "Solid" Булыгин

Многие люди путаются в непонятных математических символах и строгих математических правилах, всегда избегая решения тех проблем, в которых встречаются не только буквы, но и цифры. Безусловно, математика бывает очень сложной, но те результаты, которые можно с помощью нее получить, могут быть достаточно неожиданны, красивы и просто поразительны.

Проблема четырех красок

Проблема четырех красок – это математическая задача, которая была сформулирована в 1852 году Фрэнсисом Гутри, который в то время пытался раскрасить карту графств Англии (тогда интернета еще не было, так что делать было особо нечего). Он обнаружил кое-что интересное – нужно было всего 4 цвета, чтобы любые две области, имеющие общую границу, были раскрашены в разные цвета. Гутри заинтересовался, работает ли это правило для любой другой карты, и этот вопрос стал математической задачей, которую многие годы не могли решить.

Только в 1976 году эта задача была решена Кеннетом Аппелем и Вольфгангом Хакеном. Для доказательства был применен компьютер, и оно оказалось достаточно сложным. Но было доказано, что абсолютно любую карту (например, политическую карту мира) можно раскрасить, используя только 4 цвета так, чтобы ни одно государство не соприкасалось с другим, раскрашенным в такой же цвет.

Теорема Брауэра о неподвижной точки

Это теорема из такого раздела математики как топология, была доказана Лёйтзеном Брауэром. Ее чисто математическое выражение является достаточно абстрактным, но ее можно неожиданным способом применить к разным реальным событиям. Допустим, что у нас есть какая-нибудь картина (к примеру Мона Лиза), и мы можем сделать ее копию. Потом мы можем делать с этой копией что захотим – увеличивать, уменьшать, вращать, сминать, все что угодно. Терема Брауэра о неподвижной точке гласит, что если эту деформированную копию положить на оригинал, то всегда найдется хотя бы одна точка на копии, которая будет находиться ровно над этой же самой точкой изображения на оригинале. Это может быть кусочек уха, рта или глаза Моны, но обязательно такая точка найдется.

Теорема работает и в трехмерном пространстве. Представьте, что у нас есть стакан воды, в который мы положили ложку и размешивали воду столько, сколько захотим. По теореме Брауэра, всегда будет хотя бы одна молекула воды, которая в итоге окажется ровно на том же самом месте, что и до размешивания.

Парадокс Рассела

На рубеже 20-го века многие ученые были увлечены новым разделом математики – теорией множеств. В принципе, множество – это совокупность каких-либо объектов. В те времена, считалось, что любой набор объектов можно считать множеством – множество всех фруктов, множество всех президентов США, и все это считалось верным. Стоит добавить, что одно множество может включать в себя другие множества. В 1901 году известный математик Бертран Рассел сделал нашумевшее открытие, когда понял, что такой способ мышления ошибочен – на самом деле не все совокупности объектов можно назвать множеством.

Решив разобраться в этом вопросе, Рассел описал множество всех множеств, которые не содержат себя в качестве своих элементов. Множество всех фруктов не содержит в себе само себя, так что его можно включить во множество Рассела, как и огромное количество других множеств. Но что насчет самого множества Рассела? Оно не содержит в себе само себя, так что его тоже надо включить в это множество. Погодите ка… теперь оно содержит себя в самом себе, так что нам нужно его исключить. Но теперь его нужно включить в себя снова, так как на этот момент, оно не содержит себя в самом себе. Ну и так далее. Этот логический парадокс привел к пересмотру теории множеств, одному из самых важных направлений в современной математике.

Великая теорема Ферма

Помните со школы теорему Пифагора? Она гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (x2 + y2 = z2). Самая известная теорема Пьера Ферма говорит о том, что это же выражение не имеет натуральных решений x, y и z, если в степенях находится любое натуральное число больше двух.

Как писал сам Ферма: «…невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него». Проблема в том, что Ферма написал это в 1637 году, а недоказанной она оставалась еще долгие годы. И только в 1995 году (спустя 358 лет) теорема была доказана Эндрю Уайлсом.

Теорема о конце света

Скорее всего, большинство читателей этой статьи являются человеческими существами. Нас, людей, это отрезвит – математика может быть использована для определения того, когда наш вид полностью вымрет. Используя вероятности, но тем не менее.
Это теорема (которая существует уже примерно 30 лет и была открыта и переоткрыта уже несколько раз) говорит о том, что время человечества уже на исходе. Одно из доказательств (которые принадлежит астрофизику Ричарду Готту) на удивление простое: если рассматривать все время существования человеческого вида как процесс жизни отдельного организма, то можно определить на каком этапе жизни наш вид находится.

Исходя из предположения, что живущие сейчас люди находятся в случайном месте всей хронологии человеческой истории, мы можем утверждать с 95% уверенностью, что мы находимся среди последних 95% когда-либо родившихся людей. Кроме того, Готт пытается дать интервал 95% уверенности между минимальным и максимальным временем выживания. Поскольку он даёт шансы в 2,5% на недооценку минимального времени, то только 2,5% остаётся на переоценку максимального. Согласно Готту, человечество вымрет в интервале от 5100 лет до 7,8 миллионов лет от текущего времени. Итак, человечество, тебе пора писать завещание.

3. Вот так решают уравнения блондинки!


4. Математика в Зазеркалье

Эта надпись, которую я сделал несколько лет назад, наверное, самое короткое доказательство того, что... 2 = 3. Приставьте к ней сверху зеркало (или посмотрите ее на просвет), и вы увидите, как «двое» превратятся в «трое».

5. Буквомешалка

Еще одна необычная формула:

eleven + two = twelve + one .

Оказывается, на английском равенство 11 + 2 = 12 + 1 верно, даже если его записать словами - «сумма» букв слева и справа одинакова! Это значит, что правая часть этого равенства - анаграмма от левой, то есть получается из нее перестановкой букв.

Подобные, хотя и менее интересные буквенные равенства можно получать и на русском языке:

пятнадцать + шесть = шестнадцать + пять .

6. Пи... или не Пи?..

С 1960 до 1970 года основной национальный напиток, называвшийся «Московская особая водка» стоил: пол-литра 2,87, а четвертинка 1,49. Эти цифры знало, наверное, почти всё взрослое население СССР. Советские математики заметили, что если цену поллитровки возвести в степень, равную цене четвертинки, то получится число «Пи»:

1,49 2,87 ??

(Сообщил Б. С. Горобец).

Уже после выхода первого издания книги доцент химфака МГУ Леензон И. А. прислал мне такой любопытный комментарий к этой формуле: «...много лет назад, когда не было калькуляторов, а мы на физфаке сдавали трудный зачет по логарифмической линейке (!) (сколько раз нужно двигать подвижную линейку вправо-влево?), я с помощью точнейших отцовых таблиц (он был геодезистом, экзамен по высшей геодезии ему снился всю жизнь) узнал, что рупь-сорок-девять в степени два-восемьдесят-семь равно 3,1408. Меня это не удовлетворило. Не мог наш советский Госплан действовать столь грубо. Консультации в Министерстве торговли на Кировской показали, что все расчеты цен в государственном масштабе делались с точностью до сотых долей копейки. Но назвать точные цифры мне отказались, ссылаясь на секретность (меня это тогда удивило - какая может быть секретность в десятых и сотых долях копейки). В начале 1990-х мне удалось получить в архивах точные цифры по стоимости водки, которые к тому времени были рассекречены специальным декретом. И вот что оказалось: четвертинка: 1 рубль 49,09 коп. В продаже - 1,49 руб. Поллитровка: 2 рубля 86,63 коп. В продаже - 2,87 руб. Воспользовавшись калькулятором я легко выяснил, что в таком случае четвертинка в степени пол-литра дает (после округления до 5 значащих цифр) как раз 3,1416! Остается только удивляться математическим способностям работников советского Госплана, которые (я в этом ни секунды не сомневаюсь) специально подогнали расчетную стоимость самого популярного напитка под заранее известный результат».

Какой известный со школы математик зашифрован в этом ребусе?

8. Теория и практика

Математику, физику и инженеру предложили такую задачу: «Юноша и девушка стоят у противоположных стен зала. В какой-то момент они начинают идти навстречу другу и каждые десять секунд преодолевают половину расстояния между ними. Спрашивается, через какое время они достигнут друг друга?»

Математик, не раздумывая, ответил:

Никогда.

Физик, немного подумав, сказал:

Через бесконечное время.

Инженер после долгих расчетов выдал:

Примерно через две минуты они будут достаточно близки для любых практических целей.

9. Формула красоты от Ландау

На следующую пикантную формулу, приписываемую Ландау, большому любителю слабого пола, обратил мое внимание известный Ландаувед профессор Горобец.

Как нам сообщил доцент МГУИЭ А. И. Зюльков, он слышал, что Ландау вывел следующую формулу показателя женской привлекательности:

где K - обхват по бюсту; M - по бедрам; N - по талии, T - рост, всё в см; P - вес в кг.

Так, если принять параметры для модели (1960-х гг.) приблизительно: 80-80-60-170-60 (в указанной выше последовательности величин), то по формуле получим 5. Если же принять параметры «антимодели», например: 120-120-120-170-60, то получим 2. Вот в этом интервале школьных оценок и работает, грубо говоря, «формула Ландау».

(Цит. по книге: Горобец Б . Круг Ландау. Жизнь гения. М.: Издательство ЛКИ/URSS, 2008.)

10. Знать бы то расстояние...

Еще одно наукообразное рассуждение по поводу женской привлекательности, приписываемое Дау.

Определим привлекательность женщины как функцию от расстояния до нее. При бесконечном значении аргумента эта функция обращается в нуль. С другой стороны, в точке нуль она также равна нулю (речь идет о внешней привлекательности, а не об осязательной). Согласно теореме Лагранжа, неотрицательная непрерывная функция, принимающая на концах отрезка нулевые значения, имеет на этом отрезке максимум. Следовательно:

1. Существует расстояние, с которого женщина наиболее привлекательна.

2. Для каждой женщины это расстояние свое.

3. От женщин надо держаться на расстоянии.

11. Лошадиное доказательство

Теорема: Все лошади одного цвета.

Доказательство. Докажем утверждение теоремы по индукции.

При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.

Пусть утверждение теоремы верно при n = k . Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k . По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.

Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.

12. Немного о крокодилах

Еще одна замечательная иллюстрация применения математических методов к зоологии.

Теорема: Крокодил более длинный, чем широкий.

Доказательство. Возьмем произвольного крокодила и докажем две вспомогательные леммы.

Лемма 1: Крокодил более длинный, чем зеленый.

Доказательство. Посмотрим на крокодила сверху - он длинный и зеленый. Посмотрим на крокодила снизу - он длинный, но не такой зеленый (на самом деле он темно-серый).

Следовательно, лемма 1 доказана.

Лемма 2: Крокодил более зеленый, чем широкий.

Доказательство. Посмотрим на крокодила еще раз сверху. Он зеленый и широкий. Посмотрим на крокодила сбоку: он зеленый, но не широкий. Это доказывает лемму 2.

Утверждение теоремы, очевидно, следует из доказанных лемм.

Обратная теорема («Крокодил более широкий, чем длинный») доказывается аналогично.

На первый взгляд, из обеих теорем следует, что крокодил - квадратный. Однако, поскольку неравенства в их формулировках строгие, то настоящий математик сделает единственно правильный вывод: КРОКОДИЛОВ НЕ СУЩЕСТВУЕТ!

13. Опять индукция

Теорема: Все натуральные числа равны между собой.

Доказательство. Необходимо доказать, что для любых двух натуральных чисел A и B выполнено равенство A = B . Переформулируем это в таком виде: для любого N > 0 и любых A и B , удовлетворяющих равенству max(A , B ) = N , должно выполняться и равенство A = B .

Докажем это по индукции. Если N = 1, то A и B , будучи натуральными, оба равны 1. Поэтому A = B .

Предположим теперь, что утверждение доказано для некоторого значения k . Возьмем A и B такими, чтобы max(A , B ) = k + 1. Тогда max(A –1, B –1) = k . По предположению индукции отсюда следует, что (A –1) = (B –1). Значит, A = B .

14. Все обобщения неправильны!

Любители лингвистических и математических головоломок наверняка знают про рефлексивные, или самоописывающиеся (не подумайте ничего плохого), самоотносимые слова, фразы и числа. К последним, например, относится число 2100010006, в котором первая цифра равна количеству единиц в записи этого числа, вторая - количеству двоек, третья - количеству троек, ..., десятая - количеству нулей.

К самоописывающимся словам относится, скажем, слово двадцатиоднобуквенное , придуманное мной несколько лет назад. В нем действительно 21 буква!

Самоописывающихся фраз известно великое множество. Один из первых примеров на русском придумал много лет назад знаменитый карикатурист и словесный остроумец Вагрич Бахчанян: В этом предложении тридцать две буквы . Вот несколько других, придуманных гораздо позже: 1. Семнадцать буковок . 2. В этом предложении есть ошибка, расположенная в канце . 3. Это предложение состояло бы из семи слов, если было бы на семь слов короче . 4. Вы находитесь под моим контролем, поскольку вы будете читать меня, пока не дочитаете до конца . 5. ...Это предложение начинают и заканчивают три точки .

Есть и более сложные конструкции. Полюбуйтесь, например, на вот этого монстра (см. заметку С. Табачникова «У попа была собака» в журнале «Квант», № 6, 1989): В этой фразе два раза встречается слово «в», два раза встречается слово «этой», два раза встречается слово «фразе», четырнадцать раз встречается слово «встречается», четырнадцать раз встречается слово «слово», шесть раз встречается слово «раз», девять раз встречается слово «раза», семь раз встречается слово «два», три раза встречается слово «четырнадцать», три раза встречается слово «три», два раза встречается слово «девять», два раза встречается слово «семь», два раза встречается слово «шесть» .

Через год после публикации в «Кванте» И. Акулич придумал самоописывающуюся фразу, описывающую не только слова в нее входящие, но и знаки препинания: Фраза, которую Вы читаете, содержит: два слова «Фраза», два слова «которую», два слова «Вы», два слова «читаете», два слова «содержит», двадцать пять слов «слова», два слова «слов», два слова «двоеточие», два слова «запятых», два слова «по», два слова «левых», два слова «и», два слова «правых», два слова «кавычек», два слова «а», два слова «также», два слова «точку», два слова «одно», два слова «одну», двадцать два слова «два», три слова «три», два слова «четыре», три слова «пять», четыре слова «двадцать», два слова «тридцать», одно двоеточие, тридцать запятых, по двадцать пять левых и правых кавычек, а также одну точку .

Наконец, еще через несколько лет все в том же «Кванте», появилась заметка А. Ханяна, в которой приводилась фраза, скрупулезно описывающая все свои буковки: В этой фразе двенадцать В, две Э, семнадцать Т, три О, две Й, две Ф, семь Р, четырнадцать А, две 3, двенадцать Е, шестнадцать Д, семь Н, семь Ц, тринадцать Ь, восемь С, шесть М, пять И, две Ч, две Ы, три Я, три Ш, две П .

«Явно чувствуется, что не хватает еще одной фразы - которая рассказывала бы и о всех своих буквах, и о знаках препинания», написал в частном письме ко мне И. Акулич, породивший одного из приведенных ранее монстров. Возможно, эту весьма непростую задачу решит кто-либо из наших читателей.

15. «И гений - парадоксов друг...»

В продолжение предыдущей темы стоит упомянуть про рефлексивные парадоксы.

В уже упоминавшейся ранее книге Дж. Литлвуда «Математическая смесь» справедливо говорится, что «все рефлексивные парадоксы являются, конечно, превосходными шутками». Там же приводятся два из них, которые я позволю себе процитировать:

1. Должны существовать (положительные) целые числа, которые не могут быть заданы фразами, состоящими менее, чем из шестнадцати слов. Любое множество положительных целых чисел содержит наименьшее число, и поэтому существует число N , «наименьшее целое число, которое не может быть задано фразой, состоящей из менее, чем шестнадцати слов». Но эта фраза содержит 15 слов и определяет N .

2. В журнале Spectator был объявлен конкурс на тему «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» Первый приз получил ответ:

Наш второй конкурс

Первый приз во втором конкурсе этого года присужден мистеру Артуру Робинсону, остроумный ответ которого без натяжки должен быть признан наилучшим. Его ответ на вопрос: «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» был озаглавлен «Наш второй конкурс», но из-за лимитирования бумаги мы не можем напечатать его полностью.

16. Палиндроматика

Есть такие удивительные фразы, которые читаются одинаково и слева направо и справа налево. Одну наверняка знают все: А роза упала на лапу Азора . Именно ее просила написать в диктанте неуча Буратино капризная Мальвина. Называются такие взаимообратные фразы палиндромами, что в переводе с греческого означает «бегущий назад, возвращающийся». Вот еще несколько примеров: 1. Лилипут сома на мосту пилил . 2. Лезу на санузел . 3. Лег на храм, и дивен и невидим архангел . 4. Нажал кабан на баклажан . 5. Муза, ранясь шилом опыта, ты помолишься на разум . (Д. Авалиани). 6. Уж редко рукою окурок держу ... (Б. Гольдштейн) 7. Учуя молоко, я около мяучу . (Г. Лукомников). 8. Он верба, но она - бревно . (С. Ф.)

А интересно, есть ли палиндромы в математике? Для ответа на этот вопрос попробуем перенести идею взаимообратного, симметричного прочтения на числа и формулы. Оказывается, это не так уж и трудно. Познакомимся лишь с несколькими характерными примерами из этой палиндромной математики, палиндроматики . Оставляя в стороне палиндромные числа - например, 1991 , 666 и т.д. - обратимся сразу к симметричным формулам.

Попытаемся для начала решить такую задачу: найти все пары таких двузначных чисел

(x 1 - первая цифра, y 1 - вторая цифра) и

чтобы результат их сложения не менялся в результате прочтения суммы справа налево, т.е.

Например, 42 + 35 = 53 + 24.

Задача решается тривиально: сумма первых цифр у всех таких пар чисел равна сумме их вторых цифр . Теперь можно без труда строить подобные примеры: 76 + 34 = 43 + 67, 25 + 63 = 36 + 52 и так далее.

Рассуждая аналогичным образом, можно легко решить такую же задачу для остальных арифметических действий.

В случае разности, т.е.

получаются следующие примеры: 41 – 32 = 23 –14, 46 – 28 = 82 – 64, ... - суммы цифр у таких чисел равны (x 1 + y 1 = x 2 + y 2 ).

В случае умножения имеем: 63 48 = 84 36, 82 14 = 41 28, ... - при этом произведение первых цифр у чисел N 1 и N 2 равно произведению их вторых цифр (x 1 x 2 = y 1 y 2 ).

Наконец, для деления получаем такие примеры:

В этом случае произведение первой цифры числа N 1 на вторую цифру числа N 2 равно произведению двух других их цифр, т.е. x 1 y 2 = x 2 y 1 .

17. Антисоветская теорема

Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.

Теорема. Роль партии - отрицательна.

Доказательство. Хорошо известно, что:

1. Роль партии непрерывно возрастает.

2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.

Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.

18. Детям до шестнадцати решать запрещается

Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.

Задача. Мама старше сына на 21 год. Через шесть лет она будет старше его в пять раз. Спрашивается: ГДЕ ПАПА?!

Решение. Пусть X - возраст сына, а Y - возраст мамы. Тогда условие задачи записывается в виде системы двух простых уравнений:

Подставляя Y = X + 21 во второе уравнение, получим 5X + 30 = X + 21 + 6, откуда X = –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!

19. Неожиданный вывод

Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается, у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.

А именно, начнем с двух всем известных постулатов:

Постулат 1: Знание = Сила.

Постулат 2: Время = Деньги.

Кроме того, любой школьник знает, что

Путь s = Скорость x Время = Работа: Сила ,

Работа: Время = Сила x Скорость (*)

Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:

Работа: (Знание x Скорость) = Деньги (**)

Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.

Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.

20. Математическая игра Ландау

Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, v, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала (n ! = 1 x 2 x ... х n ), но не допускается использование секанса, косеканса и дифференцирования.

Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 - так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» - спросил я у Ландау. - «Нет», - ответил он весьма определенно. - «Вы доказали теорему о несуществовании решения?» - удивился я. - «Нет», - убежденно сказал Лев Давидович, - «но не все номера у меня получались».

Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.

Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», - пишет об этом решении Каганов. - «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».

Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.

1. Пусть среди цифр нет нулей. Составим из них два числа ab и cd , (это, разумеется, не произведения). Покажем, что при n ? 6:

sin[(ab )!]° = sin[(cd )!]° = 0.

Действительно, sin(n !)° = 0, если n ? 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.

2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.

3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.

Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin(n !)° ? 0, если n < 6».

Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.

21. Гадание по определителям

22. 9 знаков

Еще про определители.

Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают - ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.

Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.

23. Как академики задачу решали

Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».

Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) - «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.

Случилось так, что соратник Ландау и его соавтор по десятитомному курсу по теоретической физике академик Евгений Михайлович Лифшиц (1915–1985) в 1959 году помогал выпускнику школы Боре Горобцу готовиться к поступлению в один из ведущих физических вузов Москвы.

На письменном экзамене по математике в Московском физико-математическом институте предлагалась следующая задача: «В основании пирамиды SABC лежит прямоугольный равнобедренный треугольник ABC, с углом C = 90°, стороной AB = l. Боковые грани образуют с плоскостью основания двугранные углы?, ?, ?. Найдите радиус вписанного в пирамиду шара».

Будущий профессор не справился тогда с задачей, но запомнил ее условие и позже сообщил Евгению Михайловичу. Тот, повозившись с задачей в присутствии ученика, не смог решить ее сходу и забрал с собой домой, а вечером позвонил и сообщил, что, не одолев ее в течение часа, предложил эту задачу Льву Давидовичу.

Ландау обожал решать задачи, вызывавшие затруднения у других. Вскоре он перезвонил Лифшицу и, довольный, сказал: «Задачу решил. Решал ровно час. Позвонил Зельдовичу, теперь решает он.» Поясним: Яков Борисович Зельдович (1914–1987) - известный ученый, считавший себя учеником Ландау, был в те годы главным физиком-теоретиком в сверхсекретном Советском Атомном проекте (о чем, конечно, тогда мало кто знал). Примерно через час Е. М. Лифшиц позвонил снова и сообщил: только что ему позвонил Зельдович и не без гордости сказал: «Решил я вашу задачу. За сорок минут решил!»

А за какое время справитесь с этой задачей вы?

24. Задачка

В остроумном сборнике физтеховского юмора «Занаучный юмор» (М., 2000) есть немало математических шуток. Вот только одна из них.

При испытании одного изделия произошел один отказ. Какова вероятность безотказной работы изделия?

Теорема. Все натуральные числа интересны.

Доказательство. Предположим противное. Тогда должно существовать наименьшее неинтересное натуральное число. Ха, так ведь это чертовски интересно!

26. Высшая арифметика

1 + 1 = 3, когда значение 1 достаточно велико.

27. Формула Эйнштейна-Пифагора

E = m c 2 = m(a 2 + b 2).

28. О пользе теорвера

Эту забавную историю из моей студенческой жизни вполне можно предлагать на семинарах по теории вероятностей в качестве задачки.

Летом мы с друзьями отправились в поход в горы. Нас было четверо: Володя, два Олега и я. У нас была палатка и три спальника, из которых один двухместный - для нас с Володей. С этими самыми спальниками, точнее с их расположением в палатке, и вышла закавыка. Дело в том, что шли дожди, палатка была тесной, с боков подтекало, и лежащим с краю было не очень-то удобно. Поэтому я предложил решить эту проблему «по-честному», с помощью жребия.

Смотрите, - сказал я Олегам, - наш с Володей двуспальник может быть либо с краю, либо в центре. Поэтому будем бросать монетку: если выпадет «орел» - наш двуспальник будет с краю, если «решка» - в центре.

Олеги согласились, однако через нескольких ночевок с краю (нетрудно посчитать по формуле полной вероятности, что для каждого из нас с Володей вероятность спать не у края палатки равна 0,75) Олеги заподозрили неладное и предложили пересмотреть договор.

Действительно, - сказал я, - шансы были неравны. На самом деле для нашего двуспальника три возможности: с левого края, с правого и в центре. Поэтому каждый вечер мы будем тянуть одну из трех палочек - если вытянем короткую, то наш двуспальник будет в центре.

Олеги опять согласились, хотя и на этот раз наши шансы ночевать не у края (теперь вероятность равна 0,66, точнее, две третьих) были предпочтительнее, нежели у каждого из них. После двух ночевок с краю (на нашей стороне были лучшие шансы плюс везение) Олеги снова поняли, что их надули. Но тут, к счастью, кончились дожди, и проблема отпала сама собой.

А ведь на самом деле наш двуспальник должен быть всегда с краю, а мы с Володей уже с помощью монетки определяли бы каждый раз, кому повезло. То же бы делали и Олеги. В этом случае шансы спать с краю были бы у всех одинаковы и равны 0,5.

Примечания:

Иногда аналогичную историю рассказывают про Жана Шарля Франсуа Штурма.