Меню

Защита электродвигателя: основные виды, схемы подключения и принцип работы. Инструкция как установить своими руками

Пол

»

Практически нет в эксплуатации техники, где не использовался бы электрический . Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.


Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.


Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.


Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.


Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

В промышленности и различных бытовых приборах используется большое количество электродвигателей. Для того чтобы избежать сбоев в работе устройства и его дорогостоящего ремонта, необходимо оснастить его прибором защиты от перегрузки.

Принцип работы двигателя

Производителеями рассчитано, что при номинальном токе двигатель никогда не перегреется

Наиболее распространены электродвигатели переменного тока.

Принцип их действия основан на использовании законов Фарадея и Ампера:

  • В соответствии с первым в проводнике, который находится в изменяющемся магнитном поле, индуцируется ЭДС. В двигателе такое поле генерируется переменным током, протекающим по обмоткам статора, а ЭДС появляется в проводниках ротора.
  • По второму закону на ротор, по которому протекает ток, будет воздействовать сила, перемещающая его перпендикулярно электромагнитному полю. В результате этого взаимодействия начинается вращение ротора.

Существуют асинхронные и синхронные электродвигатели такого типа. Чаще всего используются асинхронные двигатели, у которых в качестве ротора используется короткозамкнутая конструкция из стержней и колец.

Для чего нужна защита

В процессе работы двигателя могут возникнуть различные ситуации, связанные с его перегрузкой, что может привести к аварии, это:

  • пониженное напряжение питания;
  • обрыв фазы;
  • перегрузка приводимых в действие механизмов;
  • слишком долгий процесс запуска или самозапуска.

По сути, защита электродвигателя от перегрузок заключается в том, чтобы своевременно обесточить двигатель

При возникновении таких нештатных ситуаций возрастает ток в обмотках. Например, при обрыве фазы питания ток статора может увеличиться от 1,6 до 2,5 раз относительно номинального тока. Это приводит к перегреву двигателя, нарушению изоляции обмоток, короткому замыканию (КЗ) и в некоторых случаях к пожару.

Как выбрать защиту электродвигателя от перегрузки

Защита электродвигателя от перегрузки может осуществляться с помощью различных устройств. К ним относятся:

  • плавкие предохранители с выключателем;
  • реле защиты;
  • тепловые реле;
  • цифровые реле.

Наиболее простой метод - применение плавких предохранителей, которые срабатывают при возникновении КЗ в схеме питания двигателя. Их недостатком является чувствительность к большим пусковым токам двигателя и необходимость установки новых предохранителей после срабатывания.

Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе

Токовое реле защиты может выдерживать временные токовые перегрузки, возникающие при пуске двигателя, и срабатывает при опасном длительном увеличении тока потребления двигателя. После устранения перегрузки реле может вручную или автоматически подключать цепь питания.

Тепловые реле используются в основном внутри двигателя. Такое реле может представлять собой биметаллический датчик или терморезистор и устанавливаться на корпусе двигателя или непосредственно на статоре. При слишком высокой температуре двигателя реле срабатывает и обесточивает цепь питания.

Наиболее продвинутым является использование новейших систем защиты с применением цифровых методов обработки информации. Такие системы наряду с защитой двигателя от перегрузки выполняют дополнительные функции - ограничивают число переключений двигателя, с помощью датчиков оценивают температуру статора и подшипников ротора, определяют сопротивление изоляции устройства. Они могут быть использованы также для диагностики неисправностей системы.

Выбор того или иного метода защиты двигателя зависит от условий и режимов его работы, а также от ценности системы, в которой используется устройство.

Защита электродвигателя от перегрузки на сегодняшний день является одной из основных задач, которую нужно решить, чтобы успешно эксплуатировать это устройство. Такие типы двигателей используются достаточно широко, а потому было изобретено и множество способов оградить их от различных негативных эффектов.

Уровни защиты

Существует большое разнообразие устройств для защиты данного оборудования, однако, все их можно разделить на уровни.

  • Внешний уровень защиты от короткого замыкания. Чаще всего здесь используется различного типа реле. Данные приборы и уровень защиты находятся на официальном уровне. Другими словами, это обязательный предмет защиты, который должен быть установлен, согласно правилам безопасности на территории РФ.
  • Реле защиты электродвигателя от перегрузок поможет избежать разнообразных критических повреждений в процессе работы, а также возможных повреждений. Эти приборы также принадлежат к внешнему уровню защиты.
  • Внутренний слой защиты предотвращает возможный перегрев деталей двигателя. Для этого иногда используются внешние выключатели, а иногда реле перегрузки.

Причины сбоев оборудования

На сегодняшний день существует большое разнообразие проблем, из-за которых может быть нарушена работоспособность электрического двигателя, если он не будет оборудован приборами для защиты.

  1. Низкий уровень электрического напряжения или же, наоборот, слишком высокий уровень подачи могут стать причиной выхода из строя.
  2. Возможна поломка вследствие того, что слишком быстро и часто будет изменяться частота подачи тока.
  3. Неверная установка агрегата или же его элементов также может быть опасна.
  4. Повышение температуры до критического значения или выше.
  5. Слишком слабое охлаждение тоже приводит к поломкам.
  6. Сильно негативно сказывается повышенная температура окружающей среды.
  7. Немногие знают, то пониженное давление или же установка двигателя намного выше уровня моря, что вызывает пониженное давление, также имеют негативное влияние.
  8. Естественно, что необходима защита электродвигателя от перегрузок, которые могут возникать, из-за сбоев в электросети.
  9. Частое включение и выключение прибора - это негативный дефект, который также нуждается в устранении при помощи приборов защиты.

Плавкие предохранители

Полное название средства защиты - плавкий предохранительный выключатель. В данном устройстве объединяется и автоматический выключатель и плавкий предохранитель, которые расположены в одном корпусе. При помощи выключателя можно также размыкать или замыкать цепь вручную. Плавкий же предохранитель - это защита электродвигателя от перегрузки по току.

Стоит отметить, что конструкция аварийного выключателя предусматривает наличие специального кожуха, который защищает персонал от случайного контакта с клеммами устройства, а также сами контакты от окисления.

Что касается плавкого предохранителя, то это приспособление должно быть способно отличать перегрузку по току от возникновения в цепи короткого замыкания. Это очень важно, так как кратковременная перегрузка по току вполне допускается. Однако, токовая защита электродвигателя от перегрузки должна сработать немедленно, если этот параметр будет продолжать расти.

Предохранители от КЗ

Существует разновидность плавкого предохранителя, которая предназначена для защиты агрегата от короткого замыкания (КЗ). Однако, здесь стоит отметить, что плавкий предохранитель быстрого срабатывания может выйти из строя, если при запуске аппарата будет происходить кратковременная перегрузка, то есть увеличение пускового тока. По этой причине такие приборы обычно используются в тех сетях, где такой скачок невозможен. Что касается самого средства защиты электродвигателя от перегрузки, то предохранитель быстрого срабатывания может выдержать ток, который будет превышать его номинальный на 500%, если перепад длится не более четверти секунды.

Предохранители с задержкой

Развитие технологий привело к тому, что удалось создать прибор для защиты и от перегрузки, и от короткого замыкания одновременно. Таким средством стал плавкий предохранитель с задержкой срабатывания. Особенность заключается в том, что он способен выдерживать 5-кратное увеличение тока, если оно длится не более 10 секунд. Возможно даже более сильное увеличение параметра, но на более короткий срок, прежде чем предохранитель сработает. Однако, чаще всего интервала в 10 секунд хватает и для запуска двигателя, и для того, чтобы предохранитель не сработал. Защита от перегрузок, от КЗ, а также другого типа электродвигателя таким прибором считается одной из наиболее надежных.

Здесь также стоит отметить, как определяется время срабатывания этого устройства защиты. Время срабатывания именно плавкого предохранителя - это отрезок, за который плавится его плавкий элемент (проволока). Когда проволока полностью расплавляется, цепь размыкается. Если говорить о зависимости времени отключения от перегрузки именно для таких типов средств защиты, то они обратно пропорциональны. Другими словами, токовая защита электродвигателя от перегрузок работает так - чем выше сила тока, тем быстрее плавится проволока, а значит сокращается время разъединения цепи.

Магнитные и тепловые приборы

На сегодняшний день автоматические приборы теплового типа считаются наиболее надежными и экономичными приборами для защиты электродвигателя от тепловых перегрузок. Эти устройства также способны выдерживать большие амплитуды тока, которые могут возникнуть во время пуска прибора. Кроме того, тепловые предохранители защищают от таких неполадок как блокировка ротора, к примеру.

Защита асинхронных электродвигателей от перегрузки может осуществляться при помощи магнитных выключателей автоматического типа. Они отличаются высокой надежностью, точностью и экономичностью. Его особенность заключается в том, что на предел его срабатывания по температуре не влияет изменение температуры окружающей среды, что в некоторых условиях работы очень важно. Также они отличаются от тепловых тем, у них более точно определено время срабатывания.

Реле перегрузки

Функции данного устройства достаточно просты, однако, и довольно важны.

  1. Такой прибор способен выдержать кратковременный перепад по току во время запуска двигателя без разрыва цепи, что наиболее важно.
  2. Размыкание цепи происходит в том случае, если ток увеличивается до того значения, когда возникает угроза поломки защищаемого прибора.
  3. После того как перегрузка будет устранена, реле может вернуться в исходное положение автоматически или же может быть возвращено вручную.

Стоит отметить, что токовая защита электродвигателя от перегрузок при помощи реле осуществляется в соответствии с характеристикой срабатывания. Другими словами - в зависимости от класса прибора. Наиболее распространенными являются классы 10, 20 и 30. Первая группа - это реле, которые срабатывают в случае наличия перегрузки, в течение 10 секунд и, если числовое значение тока превышает 600% от номинального. Вторая группа срабатывает спустя 20 секунд и менее, третья, соответственно, спустя 30 секунд и менее.

Плавкие средства защиты и реле

В настоящее время довольно часто сочетают два средства защиты - плавкие предохранители и реле. Такая комбинация работает следующим образом. Плавкий предохранитель должен защищать двигатель от короткого замыкания, а потому у него должна быть достаточно большая емкость. Из-за этого он не может защитить устройство от более низких, но все же опасных токов. Именно для устранения этого недостатка в систему вводятся реле, которые реагируют на более слабые, но все же опасные колебания тока. Наиболее важно в данном случае настроить плавкий предохранитель таким образом, чтобы он сработал раньше, чем возникнут повреждения какого-либо элемента.

Наружные средства защиты

В настоящее время довольно часто используются усовершенствованные системы наружной защиты электродвигателя. Они могут защитить прибор от перенапряжения, перекоса фаз, способны устранять вибрации или же ограничивать число включений и выключений. К тому же у таких средств имеется встроенный тепловой датчик, который помогает контролировать температуру подшипников, статора. Еще одна особенность такого прибора в том, что он способен воспринимать и обрабатывать цифровой сигнал, который создает температурный датчик.

Основное предназначение наружных средств защиты - это сохранение работоспособности трехфазных двигателей. Помимо того, что такое оборудование способно защитить двигатель во время сбоя в электрической сети, оно также обладает еще несколькими преимуществами.

  • Наружное устройство может сформировать и подать сигнал о неисправности еще до того, как она нарушит работоспособность машины.
  • Проводит диагностику тех проблем, которые уже возникли.
  • Дает возможность провести проверку реле во время технического обслуживания.

Исходя из всего вышесказанного, можно утверждать, что устройств для защиты электродвигателя от перегрузки существует большое разнообразие. Кроме того, каждое из них способно защитить прибор от определенных негативных воздействий, а потому целесообразно их комбинировать.

Асинхронные двигатели трехфазного переменного тока напряжением до 500 в при мощностях от 0,05 до 350 - 400 кВт являются наиболее распространенным видом электродвигателей.

Надежная и бесперебойная работа электродвигателей обеспечивается в первую очередь надлежащим выбором их по номинальной мощности, режиму работы и форме исполнения. Не меньшее значение имеет также соблюдение необходимых требований и правил при составлении электрической схемы, выборе пускорегулирующей аппаратуры, проводов и кабелей, монтаже и эксплуатации электропривода.

Аварийные режимы работы электродвигателей

Даже для правильно спроектированных и эксплуатируемых электроприводов при их работе всегда остается вероятность появления режимов, аварийных или ненормальных для двигателя и другого электрооборудования.

К аварийным режимам относятся :

1) многофазные (трех- и двухфазные) и однофазные короткие замыкания в обмотках электродвигателя; многофазные короткие замыкания в выводной коробке электродвигателя и во внешней силовой цепи (в проводах и кабелях, на контактах коммутационных аппаратов, в ящиках сопротивлений); короткие замыкания фазы на корпус или нулевой провод внутри двигателя или во внешней цепи - в сетях с заземленной нейтралью; короткие замыкания в цепи управления; короткие замыкания между витками обмотки двигателя (витковые замыкания).

Короткие замыкания являются наиболее опасными аварийными режимами в электроустановках. В большинстве случаев они возникают из-за пробоя или перекрытия изоляции. Токи короткого замыкания иногда достигают величин, в десятки и сотни раз превосходящих значения токов нормального режима, а их тепловое воздействие и динамические усилия, которым подвергаются токоведущие части, могут привести к повреждению всей электроустановки;

2) тепловые перегрузки электродвигателя из-за прохождения по его обмоткам повышенных токов: при перегрузках рабочего механизма по технологическим причинам, особо тяжелых условиях пуска двигателя под нагрузкой или его застопоривании, длительном понижении напряжения сети, выпадении одной из фаз внешней силовой цепи или обрыве провода в обмотке двигателя, механических повреждениях в двигателе или рабочем механизме, а также тепловые перегрузки при ухудшении условий охлаждения двигателя.

Тепловые перегрузки вызывают в первую очередь ускоренное старение и разрушение изоляции двигателя, что приводит к коротким замыканиям, т. е. к серьезной аварии и преждевременному выходу двигателя из строя.

Виды защиты асинхронных электродвигателей

Для того чтобы защитить электродвигатель от повреждений при нарушении нормальных условий работы, а также своевременно отключить неисправный двигатель от сети, предотвратив или ограничив тем самым развитие аварии, предусматриваются средства защиты.

Главным и наиболее действенным средством является электрическая защита двигателей, выполняемая в соответствии с

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей .

Защита асинхронных электродвигателей от коротких замыканий

Защита от коротких замыканий отключает двигатель при появлении в его силовой (главной) цепи или в цепи управления токов короткого замыкания.

Аппараты, осуществляющие защиту от коротких замыканий (плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем), действуют практически мгновенно, т. е. без выдержки времени.

Защита от перегрузки предохраняет двигатель от недопустимого перегрева, в частности и при сравнительно небольших по величине, но продолжительных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (температурные и , электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, - и мгновенно.

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита асинхронных электродвигателей от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя.

В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например , являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, - аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты асинхронных электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5-10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей - четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.